Acoustic levitation is frequently used for non-contact manipulation of objects and to study the impact of microgravity on physical and biological processes. While the force field produced by sound pressure lifts particles against gravity (primary acoustic force), multiple levitating objects in the same acoustic cavity interact via forces that arise from scattered sound (secondary acoustic forces). Current experimental techniques for obtaining these force fields are not well-suited for mapping the primary force field at high spatial resolution and cannot directly measure the secondary scattering force. Here, we introduce a method that can measure both acoustic forces in situ, including secondary forces in the near-field limit between arbitrarily shaped, closely spaced objects. Operating similarly to an atomic force microscope, the method inserts into the acoustic cavity a suitably shaped probe tip at the end of a long, flexible cantilever and optically detects its deflection. This makes it possible to measure forces with a resolution better than 50 nN and also to apply stress or strain in a controlled manner to manipulate levitated objects. We demonstrate this by extracting the acoustic potential present in a levitation cavity, directly measuring the acoustic scattering force between two objects, and applying tension to a levitated granular raft of acoustically bound particles in order to obtain the force–displacement curve for its deformation.

1.
K.
Honda
,
K.
Fujiwara
,
K.
Hasegawa
,
A.
Kaneko
, and
Y.
Abe
, “
Coalescence and mixing dynamics of droplets in acoustic levitation by selective colour imaging and measurement
,”
Sci. Rep.
13
,
019590
(
2023
).
2.
S.
Santesson
and
S.
Nilsson
, “
Airborne chemistry: Acoustic levitation in chemical analysis
,”
Anal. Bioanal. Chem.
378
,
1704
1709
(
2004
).
3.
A.
Vashi
,
A. S.
Yadav
,
N.-T.
Nguyen
, and
K. R.
Sreejith
, “
Parametric analysis of acoustically levitated droplet for potential microgravity application
,”
Appl. Acoust.
213
,
109624
(
2023
).
4.
N.
Yan
,
Z. Y.
Hong
,
D. L.
Geng
, and
B.
Wei
, “
A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al–Cu–Sn alloy
,”
Appl. Phys. A
120
,
207
213
(
2015
).
5.
J.
Méndez Harper
,
D.
Harvey
,
T.
Huang
,
J.
McGrath
III
,
D.
Meer
, and
J. C.
Burton
, “
The lifetime of charged dust in the atmosphere
,”
PNAS Nexus
1
,
pgac220
(
2022
).
6.
T. G.
Wang
,
A. V.
Anilkumar
,
C. P.
Lee
, and
K. C.
Lin
, “
Bifurcation of rotating liquid drops: Results from USML-1 experiments in space
,”
J. Fluid Mech.
276
,
389
403
(
1994
).
7.
G.
Dumy
,
N.
Jeger-Madiot
,
X.
Benoit-Gonin
,
T. E.
Mallouk
,
M.
Hoyos
, and
J.-L.
Aider
, “
Acoustic manipulation of dense nanorods in microgravity
,”
Microgravity Sci. Technol.
32
,
1159
1174
(
2020
).
8.
M. W.
Kepa
,
T.
Tomizaki
,
Y.
Sato
,
D.
Ozerov
,
H.
Sekiguchi
,
N.
Yasuda
,
K.
Aoyama
,
P.
Skopintsev
,
J.
Standfuss
,
R.
Cheng
,
M.
Hennig
, and
S.
Tsujino
, “
Acoustic levitation and rotation of thin films and their application for room temperature protein crystallography
,”
Sci. Rep.
12
,
5349
(
2022
).
9.
C.
Bouyer
,
P.
Chen
,
S.
Güven
,
T. T.
Demirtaş
,
T. J. F.
Nieland
,
F.
Padilla
, and
U.
Demirci
, “
A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors
,”
Adv. Mater.
28
,
161
167
(
2016
).
10.
F.
Akkoyun
,
S.
Gucluer
, and
A.
Ozcelik
, “
Potential of the acoustic micromanipulation technologies for biomedical research
,”
Biomicrofluidics
15
,
061301
(
2021
).
11.
W. J.
Xie
,
C. D.
Cao
,
Y. J.
,
Z. Y.
Hong
, and
B.
Wei
, “
Acoustic method for levitation of small living animals
,”
Appl. Phys. Lett.
89
,
214102
(
2006
).
12.
M. A.
Abdelaziz
and
D. G.
Grier
, “
Acoustokinetics: Crafting force landscapes from sound waves
,”
Phys. Rev. Res.
2
,
013172
(
2020
).
13.
N.
St Clair
,
D.
Davenport
,
A. D.
Kim
, and
D.
Kleckner
, “
Dynamics of acoustically bound particles
,”
Phys. Rev. Res.
5
,
013051
(
2023
).
14.
M. A. B.
Andrade
,
S.
Polychronopoulos
,
G.
Memoli
, and
A.
Marzo
, “
Experimental investigation of the particle oscillation instability in a single-axis acoustic levitator
,”
AIP Adv.
9
,
035020
(
2019
).
15.
J.
Rudnick
and
M.
Barmatz
, “
Oscillational instabilities in single-mode acoustic levitators
,”
J. Acoust. Soc. Am.
87
,
81
92
(
1990
).
16.
L. P.
Gor’kov
, “
On the forces acting on a small particle in an acoustical field in an ideal fluid
,”
Sov. Phys. Dokl.
6
,
773
(
1962
).
17.
M. X.
Lim
,
B.
VanSaders
, and
H. M.
Jaeger
, “
Acoustic manipulation of multi-body structures and dynamics
,”
Rep. Prog. Phys.
87
,
064601
(
2024
).
18.
H.
Bruus
, “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip
12
,
1014
1021
(
2012
).
19.
B.
Wu
,
B.
VanSaders
,
M. X.
Lim
, and
H. M.
Jaeger
, “
Hydrodynamic coupling melts acoustically levitated crystalline rafts
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2301625120
(
2023
).
20.
G. T.
Silva
and
H.
Bruus
, “
Acoustic interaction forces between small particles in an ideal fluid
,”
Phys. Rev. E
90
,
063007
(
2014
).
21.
M. X.
Lim
,
B.
VanSaders
,
A.
Souslov
, and
H. M.
Jaeger
, “
Mechanical properties of acoustically levitated granular rafts
,”
Phys. Rev. X
12
,
021017
(
2022
).
22.
M. A. B.
Andrade
,
F.
Buiochi
, and
J. C.
Adamowski
, “
Finite element analysis and optimization of a single-axis acoustic levitator
,”
IEEE Trans. Ultrason. Ferroelectrics Freq. Control
57
,
469
479
(
2010
).
23.
M. X.
Lim
,
K. A.
Murphy
, and
H. M.
Jaeger
, “
Edges control clustering in levitated granular matter
,”
Granular Matter
21
,
77
(
2019
).
24.
V.
Contreras
and
A.
Marzo
, “
Adjusting single-axis acoustic levitators in real time using rainbow schlieren deflectometry
,”
Rev. Sci. Instrum.
92
,
015107
(
2021
).
25.
R.
Onishi
,
T.
Kamigaki
,
S.
Suzuki
,
T.
Morisaki
,
M.
Fujiwara
,
Y.
Makino
, and
H.
Shinoda
, “
Two-dimensional measurement of airborne ultrasound field using thermal images
,”
Phys. Rev. Appl.
18
,
044047
(
2022
).
26.
M. X.
Lim
and
H. M.
Jaeger
, “
Acoustically levitated lock and key grains
,”
Phys. Rev. Res.
5
,
013116
(
2023
).
27.
K.
Hsiao
,
B. J.
Lee
,
T.
Samuelsen
,
G.
Lipkowitz
,
J. M.
Kronenfeld
,
D.
Ilyn
,
A.
Shih
,
M. T.
Dulay
,
L.
Tate
,
E. S. G.
Shaqfeh
, and
J. M.
DeSimone
, “
Single-digit-micrometer-resolution continuous liquid interface production
,”
Sci. Adv.
8
,
eabq2846
(
2022
).
28.
B. J.
Lee
,
K.
Hsiao
,
G.
Lipkowitz
,
T.
Samuelsen
,
L.
Tate
, and
J. M.
DeSimone
, “
Characterization of a 30 µm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization
,”
Addit. Manuf.
55
,
102800
(
2022
).
29.
J. M.
Kronenfeld
,
L.
Rother
,
M. A.
Saccone
,
M. T.
Dulay
, and
J. M.
DeSimone
, “
Roll-to-roll, high-resolution 3D printing of shape-specific particles
,”
Nature
627
,
306
312
(
2024
).
30.
Y.
Wei
and
Q.
Xu
, “
An overview of micro-force sensing techniques
,”
Sens. Actuators, A
234
,
359
374
(
2015
).
31.
Y.
Sun
,
S.
Fry
,
D.
Potasek
,
D.
Bell
, and
B.
Nelson
, “
Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration
,”
J. Microelectromech. Syst.
14
,
4
11
(
2005
).
32.
A.
Kirillov
,
E.
Mintun
,
N.
Ravi
,
H.
Mao
,
C.
Rolland
,
L.
Gustafson
,
T.
Xiao
,
S.
Whitehead
,
A. C.
Berg
,
W.-Y.
Lo
,
P.
Dollár
, and
R.
Girshick
, “
Segment anything
,” arXiv:2304.02643 (
2023
).
33.
R.-Y.
Dong
,
W.
Wang
, and
S.
Granick
, “
Colloidal flatlands confronted with urge for the third dimension
,”
ACS Nano
13
,
9442
9448
(
2019
).
34.
M.
Settnes
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a viscous fluid
,”
Phys. Rev. E
85
,
016327
(
2012
).
35.
P. B.
Muller
and
H.
Bruus
, “
Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels
,”
Phys. Rev. E
90
,
043016
(
2014
).
36.
J.
Krim
,
P.
Yu
, and
R. P.
Behringer
, “
Stick–slip and the transition to steady sliding in a 2D granular medium and a fixed particle lattice
,”
Pure Appl. Geophys.
168
,
2259
2275
(
2011
).
37.
J. R.
Greer
and
W. D.
Nix
, “
Nanoscale gold pillars strengthened through dislocation starvation
,”
Phys. Rev. B
73
,
245410
(
2006
).
You do not currently have access to this content.