X-ray sources for a range of wavelengths are being considered for in situ calibration of X-ray Imaging Crystal Spectrometers (XICSs) and for monitoring line shifts due to changes in the crystal temperature, which can vary during experimental operation over a day [A. Ince-Cushman et al., Rev. Sci. Instrum. 79, 10E302 (2008), L. Delgado-Aparicio et al., Plasma Phys. Control. Fusion 55, 125011 (2013)]. Such crystal temperature dependent shifts, if not accounted for, could be erroneously interpreted as Doppler shifts leading to errors in plasma flow-velocity measurements. The x-ray sources encompass characteristic x-ray lines falling within the wavelength range of 0.9–4.0 Å, relevant for the XICSs on present and future fusion devices. Several technological challenges associated with the development of x-ray sources for in situ calibration are identified and are being addressed in the design of multiple x-ray tubes, which will be installed inside the spectrometer housing of the XICS for the JT-60SA tokamak. These x-ray sources will be especially useful for in situ calibration between plasma discharges. In this paper, laboratory experiments are described that were conducted with a Cu x-ray source, a heated quartz (102) crystal, and a pixelated Pilatus detector to measure the temperature dependent shifts of the Cu Kα1 and Kα2 lines at 1.5405 and 1.5443 Å, respectively, and to evaluate the 2d-lattice constant for the Bragg reflecting crystal planes as a function of temperature, which, in the case of in situ wavelength calibration, would have to be used for numerical analysis of the x-ray spectra from the plasma.

1.
M.
Bitter
,
L. F.
Delgado Aparicio
,
K. W.
Hill
et al,
J. Phys. B: At. Mol. Opt. Phys.
43
,
144011
(
2010
).
2.
K. W.
Hill
,
M. L.
Bitter
,
S. D.
Scott
et al,
Rev. Sci. Instrum.
79
,
10E320
(
2008
).
3.
A.
Ince-Cushman
,
J. E.
Rice
,
M.
Bitter
et al,
Rev. Sci. Instrum.
79
,
10E302
(
2008
).
4.
G. V.
Brown
,
P.
Beiersdorfer
,
N.
Hell
, and
E.
Magee
,
Rev. Sci. Instrum.
87
,
11E339
(
2016
).
5.
S. G.
Lee
,
J. G.
Bak
,
U. W.
Nam
et al,
Rev. Sci. Instrum.
81
,
10E506
(
2010
).
6.
B.
Lyu
,
J.
Chen
,
R. J.
Hu
et al,
Rev. Sci. Instrum.
89
,
10F112
(
2018
).
7.
J.
Kring
,
N.
Pablant
,
A.
Langenberg
et al,
Rev. Sci. Instrum.
89
,
10F107
(
2018
).
8.
K.
Shah
,
M. B.
Chowdhuri
,
G.
Shukla
et al,
Rev. Sci. Instrum.
89
,
10F115
(
2018
).
9.
D.
Lu
,
J.
Chen
,
F.
Wang
et al,
Rev. Sci. Instrum.
92
,
043544
(
2021
).
10.
Z.
Cheng
,
A.
Bader
,
M.
De Bock
et al,
Rev. Sci. Instrum.
93
,
073502
(
2022
).
11.
R. J.
Fonck
,
Rev. Sci. Instrum.
56
,
885
890
(
1985
).
12.
M.
Bitter
,
K. W.
Hill
,
N. R.
Sauthoff
et al,
Phys. Rev. Lett.
43
(
2
),
129
(
1979
).
13.
R. H.
Tong
,
Z. F.
Lin
,
L. Z.
Liu
et al,
Nucl. Fusion
59
,
106027
(
2019
).
14.
L.
Delgado-Aparicio
,
M.
Bitter
,
Y.
Podpaly
et al,
Plasma Phys. Control Fusion
55
,
125011
(
2013
).
15.
D.
Lu
,
F.
Wang
,
L. F.
Delgado-Aparicio
et al,
Nucl. Fusion
63
,
056002
(
2023
).
16.
J. E.
Rice
,
K. B.
Fournier
,
G. E.
Kemp
et al,
J. Phys. B: At. Mol. Opt. Phys.
53
,
055701
(
2020
).
17.
M.
Bitter
,
H.
Hsuan
,
C.
Bush
et al,
Phys. Rev. Lett.
71
(
7
),
1007
(
1993
).
18.
N. A.
Pablant
,
Z.
Cheng
,
M.
O’Mullane
et al,
Rev. Sci. Instrum.
95
,
083517
(
2024
).
19.
P.
Beiersdorfer
,
G. V.
Brown
,
A. T.
Graf
et al,
Rev. Sci. Instrum.
83
,
10E111
(
2012
).
20.

Through private communications with PROTO Manufacturing Inc.

21.
See X-Ray Data Booklet at https://xdb.lbl.gov/.
22.
P.
Beiersdorfer
,
S.
von Goeler
,
M.
Bitter
et al,
Phys. Rev. A
37
(
11
),
4153
(
1988
).
23.
B.
Lyu
,
J.
Chen
,
R. J.
Hu
et al,
Rev. Sci. Instrum.
87
,
11E326
(
2016
).
24.
M.
Bitter
,
S.
von Goeler
,
K. W.
Hill
et al,
Phys. Rev. Lett.
47
(
13
),
921
(
1981
).
You do not currently have access to this content.