In the push to higher performance fusion plasmas, two critical quantities to diagnose are α-heat deposition that can improve and impurities mixed into the plasma that can limit performance. In high-density, highly collisional inertial confinement fusion burning plasmas, there is a significant probability that deuterium–tritium (DT) fusion products, 14.1 MeV neutrons and 3.5 MeV α-particles, will collide with and deposit energy onto (“up-scatter”) surrounding deuterium and tritium fuel ions. These up-scattered D and T ions can then undergo fusion while in-flight and produce an up-scattered neutron (15–30 MeV). These reaction-in-flight (RIF) neutrons can then be uniquely identified in the measured neutron energy spectrum. The magnitude, shape, and relative size of this spectral feature can inform models of stopping-power in the DT plasma and hence is directly proportional to α-heat deposition. In addition, the RIF spectrum can be related to mix into the burning fuel, particularly relevant for high-Z shell and other emerging National Ignition Facility platforms. The neutron time-of-flight diagnostic upgrades needed to obtain this small signal, ∼10−5 times the primary DT neutron peak, will be discussed. Results from several gain > 1 implosions will be shown and compared to previous RIF spectra. Finally, comparisons of experimental data to a simplified computational model will be made.

1.
J.
Nuckolls
et al,
Nature
239
,
139
(
1972
).
2.
J. D.
Lindl
,
Inertial Confinement Fusion
(
AIP; Springer-Verlag
,
New York; Berlin
,
1998
).
3.
4.
M. E.
Gooden
et al,
Phys. Rev. C
96
,
024622
(
2014
).
7.
D. R.
Welch
et al,
Rev. Sci. Instrum.
59
,
610
615
(
1988
).
8.
H.
Azechi
et al,
Laser Part. Beams
9
,
119
134
(
1991
).
9.
A. C.
Hayes
,
P. A.
Bradley
,
G. P.
Grim
,
G.
Jungman
, and
J. B.
Wilhelmy
, “
Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules
,”
Phys. Plasmas
17
,
012705
(
2010
).
10.
A. C.
Hayes
et al,
Phys. Plasmas
22
,
082703
(
2015
).
11.
A. C.
Hayes
et al,
Nat. Phys.
16
,
432
437
(
2020
).
12.
E. P.
Hartouni
et al,
Rev. Sci. Instrum.
92
,
043512
(
2021
).
13.
A. S.
Moore
et al,
Rev. Sci. Instrum.
94
,
061102
(
2023
).
14.
A. S.
Moore
et al,
Rev. Sci. Instrum.
92
,
023516
(
2021
).
15.
D. J.
Schlossberg
et al,
Phys. Rev. Lett.
127
,
125001
(
2021
).
16.
J. A.
Brown
et al,
J. Appl. Phys.
115
,
193504
(
2014
).
17.
A. S.
Moore
et al,
Rev. Sci. Instrum.
89
,
10I120
(
2018
).
18.
D. L.
Bleuel
et al,
Rev. Sci. Instrum.
83
,
10D313
(
2012
).
19.
S. M.
Kerr
et al,
Phys. Plasmas
30
,
013101
(
2023
).
20.
H.
Geppert-Kleinrath
et al,
Rev. Sci. Instrum.
89
,
10I146
(
2018
).
21.
S. F.
Khan
et al, “
Measuring x-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)
,”
Proc. SPIE
8505
,
850505
(
2012
).
22.
J.
Allison
et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
835
,
186
(
2016
).
23.
R.
Hatarik
et al,
Rev. Sci. Instrum.
89
,
10I138
(
2018
).
24.
B.
Champine
et al,
Phys. Rev. C
93
,
014611
(
2016
).
25.
D. T.
Casey
et al,
Rev. Sci. Instrum.
84
,
043506
(
2013
).
26.
A. J.
Crilly
et al,
Phys. Plasmas
25
,
122703
(
2018
).
27.
G. B.
Zimmerman
, “
Recent developments in Monte Carlo techniques
,”
1990
; https://www.osti.gov/servlets/purl/6146095.
28.
M.
Nocente
et al,
Nucl. Fusion
51
,
063011
(
2011
).
29.
L.
Ballabio
et al,
Phys. Rev. E
55
,
3358
(
1997
).
30.
B.
Appelbe
and
J.
Chittenden
,
Phys. Plasmas
19
,
073115
(
2012
).
31.
M. M.
Marinak
et al,
Phys. Plasmas
8
,
2275
2280
(
2001
).
32.
M.
Gittings
et al,
Comput. Sci. Discovery
1
,
015005
(
2008
).
33.
D. S.
Montgomery
et al,
Phys. Plasmas
25
,
092706
(
2018
).
34.
E. L.
Dewald
et al,
Phys. Plasmas
26
,
072705
(
2019
).
You do not currently have access to this content.