In photon-deficient, noncollective Thomson scattering diagnostics, filter polychromators are typically employed in the spectral analysis of Thomson-scattered signals to achieve acceptable signal-to-noise performance. Currently, the most common polychromator filter configuration employs a set of single-passband optical filters that define individual spectral channels. Here, we introduce a new spectral analysis method for Thomson scattering based on spectral filters with multiple passbands, referred to as Thomson scattering spectral multiplexing. Implementing multi-bandpass spectral filters on polychromators increases the achievable range of electron temperature measurement for a given number of filters employed. In addition, Thomson scattering spectral multiplexing reduces systematic measurement uncertainty, with fewer required spectral channels, thereby decreasing light loss from reduced optical element interactions. A multi-bandpass filter set, optimized by a genetic algorithm, has been successfully installed and tested on the Helically Symmetric eXperiment (HSX), demonstrating the benefits of the Thomson scattering spectral multiplexing method.

1.
J.
Sheffield
, “
The incoherent scattering of radiation from a high temperature plasma
,”
Plasma Phys.
14
,
783
(
1972
).
2.
I. H.
Hutchinson
,
Principles of Plasma Diagnostics
, Reprinted ed. (
Cambridge University Press
,
Cambridge
,
1994
).
3.
K.
Zhai
,
F. S. B.
Anderson
,
K.
Willis
,
K.
Likin
, and
D. T.
Anderson
, “
Performance of the Thomson scattering diagnostic on helical symmetry experiment
,”
Rev. Sci. Instrum.
75
,
3900
3902
(
2004
).
4.
W. C.
Young
,
L. A.
Morton
,
E.
Parke
, and
D. J. D.
Hartog
, “
High-repetition-rate pulse-burst laser for Thomson scattering on the MST reversed-field pinch
,”
J. Inst.
8
,
C11013
(
2013
).
5.
L.
Morton
, “
Turbulence and transport in magnetic islands in MST and DIII-D
,” Ph.D. dissertation (
UW-Madison
,
2016
).
6.
S. A.
Bozhenkov
,
M.
Beurskens
,
A. D.
Molin
,
G.
Fuchert
,
E.
Pasch
,
M. R.
Stoneking
,
M.
Hirsch
,
U.
Höfel
,
J.
Knauer
,
J.
Svensson
,
H. T.
Mora
, and
R. C.
Wolf
, “
The Thomson scattering diagnostic at Wendelstein 7-X and its performance in the first operation phase
,”
J. Inst.
12
,
P10004
(
2017
).
7.
G. S.
Kurskiev
,
P. A.
Sdvizhenskii
,
M.
Bassan
,
P.
Andrew
,
A. N.
Bazhenov
,
I. M.
Bukreev
,
P. V.
Chernakov
,
M. M.
Kochergin
,
A. B.
Kukushkin
,
A. S.
Kukushkin
,
E. E.
Mukhin
,
A. G.
Razdobarin
,
D. S.
Samsonov
,
V. V.
Semenov
,
S. Y.
Tolstyakov
,
S.
Kajita
, and
S. V.
Masyukevich
, “
A study of core Thomson scattering measurements in ITER using a multi-laser approach
,”
Nucl. Fusion
55
,
053024
(
2015
).
8.
M.
Bassan
,
P.
Andrew
,
G.
Kurskiev
,
E.
Mukhin
,
T.
Hatae
,
G.
Vayakis
,
E.
Yatsuka
, and
M.
Walsh
, “
Thomson scattering diagnostic systems in ITER
,”
J. Inst.
11
,
C01052
(
2016
).
9.
T.
Minami
et al, “
Present status of the Nd:YAG Thomson scattering system development for time evolution measurement of plasma profile on heliotron J
,”
Plasma Sci. Technol.
15
,
240
(
2013
).
10.
I.
Yamada
,
H.
Funaba
,
R.
Yasuhara
,
H.
Hayashi
,
N.
Kenmochi
,
T.
Minami
,
M.
Yoshikawa
,
K.
Ohta
,
J. H.
Lee
, and
S. H.
Lee
, “
Calibrations of the LHD Thomson scattering system
,”
Rev. Sci. Instrum.
87
,
11E531
(
2016
).
11.
J. H.
Lee
,
H. J.
Kim
,
I.
Yamada
,
H.
Funaba
,
Y. G.
Kim
, and
D. Y.
Kim
, “
Research of Fast DAQ system in KSTAR Thomson scattering diagnostic
,”
J. Inst.
12
,
C12035
(
2017
).
12.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 4th ed. (
Cambridge University Press
,
Cambridge, United Kingdom; New York
,
2018
).
13.
R. E.
Pechacek
and
A. W.
Trivelpiece
, “
Electromagnetic wave scattering from a high-temperature plasma
,”
Phys. Fluids
10
,
1688
1696
(
1967
).
14.
T.
Matoba
,
T.
Itagaki
,
T.
Yamauchi
, and
A.
Funahashi
, “
Analytical approximations in the theory of relativistic Thomson scattering for high temperature fusion plasma
,”
Jpn. J. Appl. Phys.
18
,
1127
(
1979
).
15.
A. C.
Selden
, “
Simple analytic form of the relativistic Thomson scattering spectrum
,”
Phys. Lett. A
79
,
405
406
(
1980
).
16.
O.
Naito
,
H.
Yoshida
,
S.
Kitamura
,
T.
Sakuma
, and
Y.
Onose
, “
How many wavelength channels do we need in Thomson scattering diagnostics?
,”
Rev. Sci. Instrum.
70
,
3780
3781
(
1999
).
17.
Plasma Scattering of Electromagnetic Radiation: Experiment, Theory and Computation
, edited by
J.
Sheffield
, 1st ed. (
Elsevier
,
Amsterdam; Boston
,
2011
).
18.
S. L.
Prunty
, “
A primer on the theory of Thomson scattering for high-temperature fusion plasmas
,”
Phys. Scr.
89
,
128001
(
2014
).
19.
T. N.
Carlstrom
,
G. L.
Campbell
,
J. C.
DeBoo
,
R.
Evanko
,
J.
Evans
,
C. M.
Greenfield
,
J.
Haskovec
,
C. L.
Hsieh
,
E.
McKee
,
R. T.
Snider
,
R.
Stockdale
,
P. K.
Trost
, and
M. P.
Thomas
, “
Design and operation of the multipulse Thomson scattering diagnostic on DIII-D (invited)
,”
Rev. Sci. Instrum.
63
,
4901
4906
(
1992
).
20.
Excelitas
, C30954EH, C30955EH and C30956EH series long wavelength enhanced silicon avalanche photodiodes datasheet,
2016
.
21.
P. R.
Bevington
and
D. K.
Robinson
,
Data Reduction and Error Analysis for the Physical Sciences
, 3rd ed. (
McGraw-Hill
,
Boston
,
2003
).
22.
D.
Kalyanmoy
,
Multi-Objective Optimization Using Evolutionary Algorithms
, 1st ed. (
John Wiley & Sons
,
Chichester, England
,
2001
).
23.
The MathWorks, Inc.
, MATLAB Version: 23.2.0.2409890 (R2023b) Update 3,
2023
.
24.
W. R.
Goodman
,
E. R.
Scott
,
Z.
Keith
,
L.
Singh
, and
D. T.
Anderson
, “
Upgrade of the helically symmetric experiment Thomson scattering diagnostic suite
,”
Rev. Sci. Instrum.
93
,
093518
(
2022
).
25.
W.
Goodman
, “
Spectral multiplexing on the HSX Thomson scattering diagnostic
,” Ph.D. dissertation (
The University of Wisconsin-Madison
,
Wisconsin
,
2024
), ISBN: 9798382591759.
You do not currently have access to this content.