In today’s big data era, with the development of the Internet of Things (IoT) technology and the trend of autonomous driving prevailing, visual information has shown a blowout increase, but most image matching algorithms have problems such as low accuracy and low inlier rates, resulting in insufficient information. In order to solve the problem of low image matching accuracy and low inlier rate in the field of autonomous driving, this research innovatively applies spectral clustering (SC) in the field of data analysis to image matching in the field of autonomous driving, and a new image matching algorithm “SC-RANSAC” based on SC and Random Sample Consensus (RANSAC) is proposed. The datasets in this research are collected based on the monocular cameras of autonomous driving cars. We use RANSAC to obtain the initial inlier set and the SC algorithm to filter RANSAC’s outliers and then use the filtered inliers as the final inlier set. In order to verify the effectiveness of the algorithm, it shows the matching effect from three angles: camera translation, rotation, and rotation and translation. SC-RANSAC is also compared with RANSAC, graph-cut RANSAC, and marginalizing sample consensus by using two different types of datasets. Finally, we select three representative pictures to test the robustness of the SC-RANSAC algorithm. The experimental results show that SC-RANSAC can effectively and reliably eliminate mismatches in the initial matching results; has a high inlier rate, real-time performance, and robustness; and can be effectively applied in the environment of autonomous driving.

1.
B. R.
Kiran
,
I.
Sobh
,
V.
Talpaert
,
P.
Mannion
,
A. A. A.
Sallab
,
S.
Yogamani
, and
P.
Pérez
, “
Deep reinforcement learning for autonomous driving: A survey
,”
IEEE Trans. Intell. Transp. Syst.
23
,
4909
(
2022
).
2.
S. V.
Tsukorenko
,
A. V.
Tarasenko
,
Y.
Wassouf
, and
V. V.
Serebrenny
, “
Toward more safety on the roads: Development of a lane keep assistance system for public transport
,” in
2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)
,
2024
.
3.
Y.
Wassouf
,
E. M.
Korekov
, and
V.
Serebrenny
, “
Decision making for advanced driver assistance systems for public transport
,” in
2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)
(
IEEE
,
2023
), Vol.
5
, pp.
1
6
.
4.
Y.
Wassouf
,
A.
Ahmad
,
K.
Konstantin
, and
V.
Serebrenny
, “
Image-based trajectory tracking and distance estimation of a follower robot from a leader one
,”
AIP Conf. Proc.
2833
,
030016
(
2023
).
5.
J.
Yang
,
C.
Wang
,
B.
Jiang
,
H.
Song
, and
Q.
Meng
, “
Visual perception enabled industry intelligence: State of the art, challenges and prospects
,”
IEEE Trans. Ind. Inf.
17
,
2204
2219
(
2021
).
6.
A. K.
Gupta
,
A.
Seal
,
P.
Khanna
,
A.
Yazidi
, and
O.
Krejcar
, “
Gated contextual features for salient object detection
,”
IEEE Trans. Instrum. Meas.
70
,
1
13
(
2021
).
7.
Q.
Zhang
,
H.
Wang
,
Z.
Feng
, and
Z.
Han
, “
Many-to-many matching-theory-based dynamic bandwidth allocation for UAVs
,”
IEEE Internet Things J.
8
,
9995
10009
(
2021
).
8.
H.
Lv
and
X.
Dong
, “
RETRACTED: Target detection algorithm for basketball moving images based on improved Gaussian mixture model
,”
Microprocessors Microsyst.
83
,
104010
(
2021
).
9.
Y.
Liu
,
J.
Nie
,
X.
Li
,
S. H.
Ahmed
,
W. Y. B.
Lim
, and
C.
Miao
, “
Federated learning in the sky: Aerial-ground air quality sensing framework with uav swarms
,”
IEEE Internet Things J.
8
,
9827
9837
(
2021
).
10.
Q.-S.
Sun
,
S.-G.
Zeng
,
Y.
Liu
,
P.-A.
Heng
, and
D.-S.
Xia
, “
A new method of feature fusion and its application in image recognition
,”
Pattern Recognit.
38
,
2437
2448
(
2005
).
11.
H.-Y.
Liu
,
W.-J.
Wang
,
R.-J.
Wang
,
C.-W.
Tung
,
P.-J.
Wang
, and
I.-P.
Chang
, “
Image recognition and force measurement application in the humanoid robot imitation
,”
IEEE Trans. Instrum. Meas.
61
,
149
161
(
2012
).
12.
Y. J.
Zhao
,
W. H.
Xu
,
C. Z.
Xi
,
D. T.
Liang
, and
H. N.
Li
, “
Automatic and accurate measurement of microhardness profile based on image processing
,”
IEEE Trans. Instrum. Meas.
70
,
1
9
(
2021
).
13.
P.
Gaur
,
H.
Gupta
,
A.
Chowdhury
,
K.
McCreadie
,
R. B.
Pachori
, and
H.
Wang
, “
A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI
,”
IEEE Trans. Instrum. Meas.
70
,
1
9
(
2021
).
14.
A.
Rahman
,
M. S.
Hossain
,
N. A.
Alrajeh
, and
F.
Alsolami
, “
Adversarial examples—Security threats to COVID-19 deep learning systems in medical IoT devices
,”
IEEE Internet Things J.
8
,
9603
9610
(
2021
).
15.
P.
Jannin
,
E.
Krupinski
, and
S. K.
Warfield
, “
Validation in medical image processing
,”
IEEE Trans. Med. Imaging
25
,
1405
1409
(
2006
).
16.
H.
You
,
S.
Tian
,
L.
Yu
, and
Y.
Lv
, “
Pixel-level remote sensing image recognition based on bidirectional word vectors
,”
IEEE Trans. Geosci. Remote Sensing
58
,
1281
1293
(
2020
).
17.
Z.-J.
Du
,
S.-S.
Huang
,
T.-J.
Mu
,
Q.
Zhao
,
R.
Martin
, and
K.
Xu
, “
Accurate dynamic SLAM using CRF-based long-term consistency
,”
IEEE Trans. Visualization Comput. Graphics
28
,
1745
(
2020
).
18.
J.
Ma
,
X.
Jiang
,
A.
Fan
,
J.
Jiang
, and
J.
Yan
, “
Image matching from handcrafted to deep features: A survey
,”
Int. J. Comput. Vision
129
,
23
79
(
2021
).
19.
H.
Chen
,
C.-w.
Ma
,
Y.-c.
Chen
,
S.
Xiao-lin
, and
Z.-l.
Tang
, “
Fast template matching arithmetic based on image gray statistic
,”
Acta Photonica Sin.
38
,
1586
1590
(
2009
).
20.
S. K.
Paul
, “
Determination of exponential smoothing constant to minimize mean square error and mean absolute deviation
,”
Global J. Res. Eng.
11
,
31
34
(
2011
).
21.
S.
Wong
,
S.
Vassiliadis
, and
S.
Cotofana
, “
A sum of absolute differences implementation in FPGA hardware
,” in
Proceedings of the 28th Euromicro Conference
(
IEEE
,
Dortmund, Germany
,
2002
), pp.
183
188
.
22.
M. B.
Hisham
,
S. N.
Yaakob
,
R. A. A.
Raof
,
A. B. A.
Nazren
, and
N. M.
Wafi
, “
Template matching using sum of squared difference and normalized cross correlation
,” in
IEEE Student Conference on Research and Development
(
IEEE
,
Kuala Lumpur, Malaysia
,
2015
), pp.
100
104
.
23.
D. I.
Barnea
and
H. F.
Silverman
, “
A class of algorithms for fast digital image registration
,”
IEEE Trans. Comput.
C-21
,
179
186
(
1972
).
24.
J.
Peng
,
Y.
Shao
,
N.
Sang
, and
C.
Gao
, “
Joint image deblurring and matching with feature-based sparse representation prior
,”
Pattern Recognit.
103
,
107300
(
2020
).
25.
J. L.
Gaol
,
M. A.
Haq
,
S.
Armiyanto
,
H.
Kusuma
, and
T.
Tasripan
, “
Automatic self-checkout system using SURF, brute force matcher, and RFID for payment process optimization at supermarket
,” in
4th International Seminar on Science and Technology, Postgraduate Program
Institut Teknologi Sepuluh Nopember (ASME
,
Surabaya, Indonesia
,
2018
), pp.
140
144
.
26.
P. C.
Ng
and
S.
Henikoff
, “
SIFT: Predicting amino acid changes that affect protein function
,”
Nucleic Acids Res.
31
,
3812
3814
(
2003
).
27.
H.
Bay
,
A.
Ess
,
T.
Tuytelaars
, and
L.
Van Gool
, “
Speeded-up robust features SURF
,”
Comput. Vision Image Understanding
110
,
346
359
(
2008
).
28.
E.
Rublee
,
V.
Rabaud
,
K.
Konolige
, and
G.
Bradski
, “
ORB: An efficient alternative to SIFT or SURF
,” in
International Conference on Computer Vision
(
IEEE
,
Barcelona, Spain
,
2011
), pp.
2564
2571
.
29.
M. A.
Fischler
and
R. C.
Bolles
, “
Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
,”
Commun. ACM
24
,
381
395
(
1981
).
30.
R.
Yue-mei
,
C.
Xian-yi
,
L.
Xiao-yan
, and
X.
Yu-yu
, “
Description and recognition of image based on concept semantics
,”
Comput. Sci.
35
,
206
212
(
2008
).
31.
L.
Wang
,
Y.
Zhang
, and
J.
Feng
, “
On the Euclidean distance of images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
27
,
1334
1339
(
2005
).
32.
M. E.
Machkouri
,
D.
Volny
, and
W. B.
Wu
, “
A central limit theorem for stationary random fields
,”
Stochastic Processes Appl.
123
,
1
14
(
2013
).
33.
W.-Y.
Chen
,
Y.
Song
,
H.
Bai
,
C.-J.
Lin
, and
E. Y.
Chang
, “
Parallel spectral clustering in distributed systems
,”
IEEE Trans. Pattern Anal. Mach. Intell.
33
,
568
586
(
2011
).
34.
T.
Cover
and
P.
Hart
, “
Nearest neighbor pattern classification
,”
IEEE Trans. Inf. Theory
13
,
21
27
(
1967
).
35.
D.
Barath
and
J.
Matas
, “
Graph-cut RANSAC
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
Salt Lake City
,
2018
), pp.
6733
6741
.
36.
B.
D
,
M.
J
, and
N.
J
, “
MAGSAC: Marginalizing sample consensus
,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(
IEEE
,
Los Angeles
,
2019
), pp.
10197
10205
.
37.
X.
Gao
,
T.
Zhang
,
Y.
Liu
, and
Q.
Yan
,
Fourteen Lectures of Visual SLAM: From Theory to Practice
(
Publishing House of Electronics Industry
,
Beijing
,
2017
).
You do not currently have access to this content.