The concentration of carbon dioxide (CO2) is an important indicator for coal mine safety. Real-time monitoring of CO2 concentration is of great importance for taking actions in advance to avoid the occurrence of potential accidents. To address the issues of poor portability and high cost associated with existing coal mine CO2 detection equipment, this paper develops a miniaturized CO2 detection system based on non-dispersive infrared (NDIR) technology. This sensor integrates an infrared light source and a dual-channel pyroelectric detector into a reflective gas chamber, thereby achieving an extended optical path and higher system sensitivity within limited space. Meanwhile, the noise interference was greatly mitigated by using hardware and software filtering techniques. Based on principle analysis, the Lambert–Beer law was parametrically corrected, and then, a model relationship between the dual-channel voltage ratio and concentration was established. In addition, temperature compensation for zero and span values was introduced to improve the adaptability of the detection results to temperature changes. Testing results indicate that the developed detection system can realize CO2 measurement in the concentration range of 0 to 50 000 ppm within a temperature range of 0–40 °C, with a maximum detection error of less than 0.12% and a repeatability deviation of less than 1.04%. During a stability test for 12 h, the maximum concentration drift is 0.07%, indicating that the developed system meets the requirements for monitoring CO2 safety in coal mines.

1.
Z. Y.
Song
and
C.
Kuenzer
,
Int. J. Coal Geol.
133
,
72
(
2014
).
2.
W.
Gong
,
J.
Hu
,
Z. W.
Wang
,
Y. B.
Wei
,
Y. F.
Li
,
T. T.
Zhang
,
Q. D.
Zhang
,
T. Y.
Liu
,
Y. N.
Ning
,
W.
Zhang
, and
K. T. V.
Grattan
,
Front. Phys.
10
,
1058475
(
2022
).
3.
J.
Deng
,
W.-L.
Chen
,
C.
Liang
,
W.-F.
Wang
,
Y.
Xiao
,
C.-P.
Wang
, and
C.-M.
Shu
, “
Correction model for CO detection in the coal combustion loss process in mines based on GWO-SVM
,”
J. Loss Prev. Process Ind.
71
,
104439
(
2021
).
4.
X. N.
Jia
,
J.
Roels
,
R.
Baets
, and
G.
Roelkens
,
Sensors
21
,
5347
(
2021
).
5.
M.
Makhdoumi Akram
,
A.
Nikfarjam
,
H.
Hajghassem
,
M.
Ramezannezhad
, and
M.
Iraj
,
Sens. Rev.
40
,
637
(
2020
).
6.
T. A.
Jacobson
,
J. S.
Kler
,
M. T.
Hernke
,
R. K.
Braun
,
K. C.
Meyer
, and
W. E.
Funk
,
Nat. Sustainability
2
,
691
(
2019
).
7.
H. Z.
Li
,
G. L.
Guo
, and
N. S.
Zheng
,
Combust. Sci. Technol.
193
,
1022
(
2021
).
8.
A.
Hosoya
,
S.
Tamura
, and
N.
Imanaka
,
ISIJ Int.
56
,
1634
(
2016
).
9.
J. C.
Su
,
L. H.
Cao
,
L.
Li
,
J.
Wei
,
G. N.
Li
, and
Y. Y.
Yuan
,
Nanoscale
5
,
9720
(
2013
).
10.
M.
Struzik
,
I.
Garbayo
,
R.
Pfenninger
, and
J. L. M.
Rupp
,
Adv. Mater.
30
,
1804098
(
2018
).
11.
G. W.
Wang
,
H. Z.
Chen
, and
Y. H.
Wu
,
Int. J. Electrochem. Sci.
15
,
11046
(
2020
).
12.
Q. F.
Sun
,
T. Y.
Liu
,
X. N.
Yu
, and
M. Z.
Huang
,
Sens. Actuators, B
390
,
133901
(
2023
).
13.
X.
Liu
,
S. T.
Cheng
,
H.
Liu
,
S.
Hu
,
D. Q.
Zhang
, and
H. S.
Ning
,
Sensors
12
,
9635
(
2012
).
14.
Z. T.
Wu
,
X. B.
Pang
,
B.
Xing
,
Q. Q.
Shang
,
H.
Wu
,
Y.
Lu
,
H. N.
Wu
,
Y.
Lyu
,
J. J.
Li
,
B. Z.
Wang
,
S. M.
Ding
,
D. Z.
Chen
, and
J. M.
Chen
,
Sustainability
15
,
1533
(
2023
).
15.
C.
Li
,
K.
Chen
,
M.
Guo
,
X.
Zhao
,
H.
Qi
,
G.
Zhang
,
N.
Wang
, and
L.
Xu
, “
Intrinsically safe fiber-optic photoacoustic gas sensor for coal spontaneous combustion monitoring
,”
IEEE Trans. Instrum. Meas.
71
,
1
9
(
2022
).
16.
T.
Liu
,
H.
Liu
,
Y.
Li
,
Z.
Zhang
, and
S.
Liu
,
IEEE/ASME Trans. Mechatron.
24
,
384
(
2019
).
17.
T.
Liu
,
H.
Liu
,
Z.
Chen
, and
A. M.
Lesgold
, “
Fast blind instrument function estimation method for industrial infrared spectrometers
,”
IEEE Trans. Ind. Inf.
14
,
5268
5277
(
2018
).
18.
T.
Liu
,
H.
Liu
,
Y.-F.
Li
,
Z.
Chen
,
Z.
Zhang
, and
S.
Liu
,
IEEE Trans. Ind. Inf.
16
,
544
(
2020
).
19.
H.
Liu
,
Y.
Shi
, and
T.
Wang
,
Opt. Express
28
,
11451
(
2020
).
20.
W. F.
Wang
,
B.
Yang
,
H. F.
Liu
,
L. F.
Ren
,
D.
He
,
X. C.
Zhao
, and
J.
Li
,
Sci. Rep.
13
,
15302
(
2023
).
21.
H.
Hussain
,
J.
Kim
, and
S.
Yi
,
Sensors
18
,
2911
(
2018
).
22.
F.
Xin
,
J.
Li
,
J.
Guo
,
D.
Yang
,
Y.
Wang
,
Q.
Tang
, and
Z.
Liu
,
Sensors
21
,
1722
(
2021
).
23.
V.
Mayorova
,
A.
Morozov
,
I.
Golyak
,
I.
Golyak
,
N.
Lazarev
,
V.
Melnikova
,
D.
Rachkin
,
V.
Svirin
,
S.
Tenenbaum
,
I.
Vintaykin
,
D.
Anfimov
, and
I.
Fufurin
,
Sensors
23
,
6794
(
2023
).
24.
D.
Wilson
,
J. W.
Phair
, and
M.
Lengden
,
IEEE Sens. J.
19
,
6006
(
2019
).
25.
W.-d.
Pan
,
J.-w.
Zhang
,
J.-m.
Dai
, and
K.
Song
, “
Tunable diode laser absorption spectroscopy system for trace ethylene detection
,”
Spectrosc. Spectral Anal.
32
,
2875
2878
(
2012
).
26.
H.
Liu
,
Y.
Li
,
Z.
Zhang
,
S.
Liu
, and
T.
Liu
,
Opt. Express
26
,
22837
(
2018
).
27.
H.
Liu
,
L.
Yan
,
Y.
Chang
,
H.
Fang
, and
T.
Zhang
,
IEEE Trans. Instrum. Meas.
62
,
315
(
2013
).
28.
Y.
Liang
,
X.
Tang
,
X.
Zhang
,
F.
Tian
,
Y.
Sun
, and
H.
Dong
,
J. Spectrosc.
2015
,
1
.
29.
M.
Gu
,
J.
Chen
,
Y.
Zhang
,
T.
Tan
,
G.
Wang
,
K.
Liu
,
X.
Gao
, and
J.
Mei
,
Sensors
23
,
2072
(
2023
).
30.
K. M. T. S.
Bandara
,
K.
Sakai
,
T.
Nakandakari
, and
K.
Yuge
,
Sensors
21
,
1189
(
2021
).
32.
Q.-L.
Tan
,
W.-D.
Zhang
,
C.-Y.
Xue
,
J.-J.
Xiong
,
Y.-C.
Ma
, and
F.
Wen
,
Opt Laser. Technol.
40
,
703
(
2008
).
33.
Q.
Sun
,
T.
Liu
, and
M.
Huang
,
Sens. Actuators, A
363
,
114722
(
2023
).
34.
L.
Zhou
,
Y.
He
,
Q.
Zhang
, and
L.
Zhang
,
Micromachines
12
,
845
(
2021
).
35.
Y.
Zhang
,
P.
Jiang
,
W.
Cao
,
X.
Li
, and
J.
Lai
,
Optik
223
,
165630
(
2020
).
36.
A.
Prokopiuk
,
Z.
Bielecki
, and
J.
Wojtas
,
Metrol. Meas. Syst.
28
,
803
(
2021
).
37.
Y.
You
,
K.
You
,
H.
Chen
, and
T. J.
Oechtering
,
IEEE Internet Things J.
9
,
13848
(
2022
).
38.
W.
Yuan
,
S.
Lu
,
Y.
Guan
, and
Y.
Hu
,
Infrared Phys. Technol.
97
,
129
(
2019
).
39.
J.-H.
Han
,
S.-W.
Han
,
S. M.
Kim
,
J. J.
Pak
, and
S.
Moon
,
IEEE Sens. J.
13
,
3090
(
2013
).
40.
D.
Trieu-Vuong
,
I.-Y.
Choi
,
Y.-S.
Son
, and
J.-C.
Kim
,
Sens. Actuators, B
231
,
529
(
2016
).
41.
Q.
Tan
,
L.
Tang
,
M.
Yang
,
C.
Xue
,
W.
Zhang
,
J.
Liu
, and
J.
Xiong
,
Opt. Lasers Eng.
74
,
103
(
2015
).
42.
F.-C.
Tian
,
Y.-T.
Liang
,
H.-Q.
Zhu
,
M.-Y.
Chen
, and
J.-C.
Wang
,
J. Cent. South Univ.
29
,
1840
(
2022
).
43.
J.
Liu
,
Q.
Tan
,
W.
Zhang
,
C.
Xue
,
T.
Guo
, and
J.
Xiong
,
Measurement
44
,
823
(
2011
).
44.
M.
Vafaei
,
A.
Amini
, and
A.
Siadatan
,
IEEE Trans. Instrum. Meas.
69
,
2258
(
2020
).
You do not currently have access to this content.