To control and optimize the power of the SPARC tokamak, we require information on the total radiated power of the plasma and its 2D and 3D spatial distribution. The SPARC bolometry diagnostic is being designed and built to measure the radiated power for controlling power balance, investigating the dissipation capabilities of various divertor concepts, and measuring the efficacy of the disruption thermal load mitigation. Proven resistive bolometer sensor technology will be used, with 248 lines of sight integrated into pinhole cameras in 20 different locations. This diversity of views will allow the bolometers to view the core, divertor, and particularly X-points of the plasma with high resolution. 14 of these camera locations are dedicated to 2D equilibrium radiated power, while the remaining six locations are designed to measure 3D radiated energy during disruptions. The bolometer sensor holders, pinhole camera boxes, and cabling have been designed to survive the high neutron flux (but low fluence) and up to 400 °C temperatures seen during operation and vacuum bake. The resistive bolometer sensors use Au absorbers with an Al heat conduction layer and C anti-reflective layer. These sensor chips are wire-bonded to an AlN circuit board, both of which are held inside a custom AlN and stainless steel bolometer holder. Design and optimization of the pinhole camera lines of sight are performed using Cherab. This work details the current state of the design of the SPARC bolometry diagnostic and its interfaces, as well as ongoing work to validate the design.

1.
M. L.
Reinke
et al, “
Overview of the early campaign diagnostics for the SPARC tokamak
,” in
25th Topical Conference on High Temperature Plasma Diagnostics
,
2024
.
2.
H.
Meister
,
L.
Giannone
,
L. D.
Horton
,
G.
Raupp
,
W.
Zeidner
,
G.
Grunda
,
S.
Kalvin
,
U.
Fischer
,
A.
Serikov
,
S.
Stickel
, and
R.
Reichle
, “
The ITER bolometer diagnostic: Status and plans
,”
Rev. Sci. Instrum.
79
,
10F511
(
2008
).
3.
B. J.
Youngblood
,
Bolometer Diagnostics on Alcator C-Mod
(
Department of Nuclear Engineering; Massachusetts Institute of Technology
,
2004
).
4.
G. G.
van Eden
,
M. L.
Reinke
,
B. J.
Peterson
,
T. K.
Gray
,
L. F.
Delgado-Aparicio
,
M. A.
Jaworski
,
J.
Lore
,
K.
Mukai
,
R.
Sano
,
S. N.
Pandya
, and
T. W.
Morgan
, “
Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U
,”
Rev. Sci. Instrum.
87
,
11D402
(
2016
).
5.
A. W.
Leonard
,
W. H.
Meyer
,
B.
Geer
,
D. M.
Behne
, and
D. N.
Hill
, “
2D tomography with bolometry in DIII-D (abstract)
,”
Rev. Sci. Instrum.
66
,
664
(
1995
) (United States).
6.
A.
Huber
,
K.
McCormick
,
P.
Andrew
,
P.
Beaumont
,
S.
Dalley
,
J.
Fink
,
J.
Fuchs
,
K.
Fullard
,
W.
Fundamenski
,
L.
Ingesson
,
F.
Mast
,
S.
Jachmich
,
G.
Matthews
,
P.
Mertens
,
V.
Philipps
,
R.
Pitts
,
S.
Sanders
,
W.
Zeidner
, and
JET-EFDA
, “
Upgraded bolometer system on JET for improved radiation measurements
,”
Fusion Eng. Des.
82
,
1327
1334
(
2007
).
7.
E. R.
Müller
,
G.
Weber
,
F.
Mast
,
G.
Schramm
,
E.
Buchelt
, and
C.
Andelfinger
, “
Design of a four-channel bolometer module for ASDEX upgrade and tore supra
,”
Technical Report No. IPP 1/224, Max Planck Institute for Plasma Physics
1985,
41
(n.d.).
8.
J.
Lovell
,
M. L.
Reinke
,
A. R.
Field
,
B. A.
Lomanowski
, and
MAST Upgrade Team
, “
Overview and first measurements of the MAST Upgrade bolometer diagnostic
,”
Rev. Sci. Instrum.
94
,
023509
(
2023
).
9.
K. F.
Mast
,
J. C.
Vallet
,
C.
Andelfinger
,
P.
Betzler
,
H.
Kraus
, and
G.
Schramm
, “
A low noise highly integrated bolometer array for absolute measurement of VUV and soft x radiation
,”
Rev. Sci. Instrum.
62
,
744
750
(
1991
).
10.
G.
Wurden
, “
A radiation-hard, steady state, digital imaging bolometer system
,”
Fusion Eng. Des.
34–35
,
301
305
(
1997
).
11.
Q.
Sheng
,
G.
Liu
,
M. L.
Reinke
, and
M.
Han
, “
A fiber-optic bolometer based on a high-finesse silicon Fabry–Pérot interferometer
,”
Rev. Sci. Instrum.
89
,
065002
(
2018
).
12.
M. L.
Reinke
and
I. H.
Hutchinson
, “
Two dimensional radiated power diagnostics on Alcator C-Mod
,”
Rev. Sci. Instrum.
79
,
10F306
(
2008
).
13.
M.
Bernert
,
T.
Eich
,
A.
Burckhart
,
J. C.
Fuchs
,
L.
Giannone
,
A.
Kallenbach
,
R. M.
McDermott
,
B.
Sieglin
, and
ASDEX Upgrade Team
, “
Application of AXUV diode detectors at ASDEX upgrade
,”
Rev. Sci. Instrum.
85
,
033503
(
2014
).
14.
H.
Meister
,
M.
Willmeroth
,
D.
Zhang
,
A.
Gottwald
,
M.
Krumrey
, and
F.
Scholze
, “
Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes
,”
Rev. Sci. Instrum.
84
,
123501
(
2013
).
15.
B.
Stein-Lubrano
,
R.
Sweeney
,
R.
Li
,
J.
Rabinowitz
,
N.
Ferraro
,
R.
Granetz
,
V.
Izzo
,
A.
Kleiner
,
J.
Lovell
,
E.
Marmar
,
M.
Reinke
, and
J.
Rice
, “
3D disruption radiation modeling and considerations for SPARC bolometry design
,”
(APS Division of Plasma Physics Meeting Abstracts, APS Meeting Abstracts,
2023), Vol. 2023, p.
NO05.012
.
16.
B.
Stein-Lubrano
,
R.
Sweeney
,
D.
Bonfiglio
,
J.
Lovell
,
P.
Carvalho
,
L. R.
Baylor
,
R.
Granetz
,
S.
Jachmich
,
E. H.
Joffrin
,
M.
Kong
,
M.
Lehnen
,
C. F.
Maggi
,
E. S.
Marmar
,
E.
Nardon
,
P.
Puglia
,
U. A.
Sheikh
,
D.
Shiraki
, and
S. A.
Silburn
, “
3D radiated power analysis of JET SPI discharges using the Emis3D forward modeling tool
,”
Nucl. Fusion
64
,
036020
(
2024
).
17.
M.
Bernert
,
S.
Wiesen
,
O.
Février
,
A.
Kallenbach
,
J.
Koenders
,
B.
Sieglin
,
U.
Stroth
,
T.
Bosman
,
D.
Brida
,
M.
Cavedon
,
P.
David
,
M.
Dunne
,
S.
Henderson
,
B.
Kool
,
T.
Lunt
,
R.
McDermott
,
O.
Pan
,
A.
Perek
,
H.
Reimerdes
,
U.
Sheikh
,
C.
Theiler
,
M.
van Berkel
,
T.
Wijkamp
, and
M.
Wischmeier
, “
The X-Point radiating regime at ASDEX Upgrade and TCV
,”
Nucl. Mater. Energy
34
,
101376
(
2023
).
18.
S.
Lee
,
M.
Shafer
,
M.
Reinke
,
N.
Uddin
,
Q.
Sheng
,
M.
Han
,
D.
Donovan
, and
R.
O’Neill
, “
First demonstration of a fiber optic bolometer on a tokamak plasma (invited)
,”
Rev. Sci. Instrum.
93
,
123515
(
2022
).
19.
S. P.
Langley
, “
The bolometer and radiant energy
,”
Proc. Am. Acad. Arts Sci.
16
,
342
358
(
1880
).
20.
H.
Meister
,
M.
Bernert
,
W.
Biel
,
M.
Han
,
L.
Ingesson
,
K.
Mukai
,
F.
Penzel
,
B.
Peterson
,
R.
Reichle
,
M.
Reinke
,
S.
Schmitt
, and
D.
Zhang
, “
Bolometer developments in diagnostics for magnetic confinement fusion
,”
J. Instrum.
14
,
C10004
(
2019
).
21.
See https://www.d-tacq.com/bolo8blf.shtml for BOLO8BLF 8 Channels Bolometer : D-TACQ Solutions.
22.
I.
Abramovic
et al, “
Development of synthetic diagnostics for SPARC
,” in
25th Topical Conference on High Temperature Plasma Diagnostics
,
2024
.
23.
A.
Teplukhina
,
D.
Battaglia
,
T.
Body
,
M.
Boyer
,
A.
Creely
,
C.
Hasse
,
P.
Kaloyannis
,
J.
Logan
,
T.
Looby
,
J.
Wai
,
C.
Contre
,
F.
Felici
,
A.
Merle
,
O.
Sauter
,
D.
Garnier
,
N.
Howard
,
P.
Rodriguez-Fernandez
,
A.
Wang
,
O.
Nelson
,
C.
Paz-Soldan
, and
I.
Stewart
, “
Full-pulse simulations for SPARC using MOSAIC
,”
(APS Division of Plasma Physics Meeting Abstracts, APS Meeting Abstracts,
2023), Vol. 2023, p.
JP11.132
.
You do not currently have access to this content.