To satisfy the need for low jitter in gas switches at repetition rate and enhance insulation reliability during high voltage operation of the trigger, we propose a micro-jet triggering system. This system requires less energy and can use a laser power supply as an energy source. It effectively improves the insulation stability of the trigger when working at high potentials and achieves a good triggering effect with low jitter at low working coefficients. The breakdown characteristics were tested by double-pulse experiments. Ensuring the same operating conditions for both pulses, the pulse interval was varied to obtain the breakdown voltage dispersion at different repetition rates. The results indicate that the dispersion of the breakdown voltages can reach 0.16% at a frequency of 50 Hz with a pulse front of 30 μs, representing an order of magnitude reduction compared to the 1.45% at switching self-breakdown, and decreases further as the air pressure rises. In addition, the size of the microcapillary has an impact on the dispersion of breakdown voltage. It was found that for a range of lengths from 2 to 6 mm and aperture sizes from 80 to 400 μm, the trigger jitter was lower when the length was larger and the aperture was smaller. Furthermore, a trigger life test was performed on the ceramic capillary, and after one million triggers, the system remained stable with no degradation in trigger performance.

1.
K.-D.
Weltmann
and
T.
Von Woedtke
, “
Plasma medicine—current state of research and medical application
,”
Plasma Phys. Control. Fusion
59
(
1
),
014031
(
2017
).
2.
M. C.
Krebs
,
P.
Bécasse
,
D.
Verjat
, and
J. C.
Darbord
, “
Gas–plasma sterilization: Relative efficacy of the hydrogen peroxide phase compared with that of the plasma phase
,”
Int. J. Pharm.
160
(
1
),
75
81
(
1998
).
3.
N.
Georgescu
,
A.
Vulpe
, and
R.
Minea
, “
A system for repetitive pulsed corona plasmas, with ecological applications
,” in
Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No. 03CH37472)
(
IEEE
,
Dallas, TX
,
2003
), pp.
1235
1238
.
4.
S. K.
Luybutin
,
S. N.
Rukin
,
K. A.
Sharypov
,
V. G.
Shpak
,
S. A.
Shunailov
,
B. G.
Slovikovsky
,
M. R.
Ulmaskulov
,
M. I.
Yalandin
,
S. D.
Korovin
, and
V. V.
Rostov
, “
Nanosecond hybrid modulator for the fast-repetitive driving of X-band, gigawatt-power microwave source
,”
IEEE Trans. Plasma Sci.
33
(
4
),
1220
1225
(
2005
).
5.
J.
Ju
,
J.
Zhang
,
T.
Shu
, and
H.
Zhong
, “
An improved X-band triaxial klystron amplifier for gigawatt long-pulse high-power microwave generation
,”
IEEE Electron Device Lett.
38
(
2
),
270
272
(
2017
).
6.
A. A.
Kim
,
B. M.
Kovalchuk
,
A. N.
Bastrikov
,
V. G.
Durakov
,
S. N.
Volkov
, and
V. A.
Sinebryukhov
, “
100 ns current rise time LTD stage
,” in
PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No. 01CH37251)
(
IEEE
,
Las Vegas, NV
,
2001
), Vol.
2
, pp.
1491
1494
.
7.
M. K.
Matzen
,
B. W.
Atherton
,
M. E.
Cuneo
,
G. L.
Donovan
,
C. A.
Hall
,
M.
Herrmann
,
M. L.
Kiefer
,
R. J.
Leeper
,
G. T.
Leifeste
,
F. W.
Long
,
G. R.
Mckee
,
T. A.
Mehlhorn
,
J. L.
Porter
,
L. X.
Schneider
,
K. W.
Struve
,
W. A.
Stygar
, and
E. A.
Weinbrecht
, “
The refurbished Z facility: Capabilities and recent experiments
,”
Acta Phys. Pol. A
115
(
6
),
956
958
(
2009
).
8.
H.
Jiang
,
X.
Jiang
,
Z.
Wang
,
F.
Sun
,
H.
Wei
,
C.
Lou
, and
A.
Qiu
, “
5.8-GW discharge brick for linear transformer driver
,”
IEEE Trans. Plasma Sci.
50
(
11
),
4718
4723
(
2022
).
9.
K.
Zhang
,
F.
Chen
,
S.
Li
,
G.
Yang
, and
J.
Guo
, “
Developing a long lifetime three-electrode spark-gap switch for high power, repetitive, narrow pulse width transversely excited atmospheric CO2 laser
,”
Rev. Sci. Instrum.
90
(
12
),
124702
(
2019
).
10.
X.-B.
Cheng
,
J.-L.
Liu
,
B.-L.
Qian
,
Z.
Chen
, and
J.-H.
Feng
, “
Research of a high-current repetitive triggered spark-gap switch and its application
,”
IEEE Trans. Plasma Sci.
38
(
3
),
516
522
(
2010
).
11.
J. M.
Lehr
,
M. D.
Abdalla
,
F. R.
Gruner
,
B. C.
Cockreham
,
M. C.
Skipper
,
S. M.
Ahern
, and
W. D.
Prather
, “
Development of a hermetically sealed, high-energy trigatron switch for high repetition rate applications
,”
IEEE Trans. Plasma Sci.
28
(
5
),
1469
1475
(
2000
).
12.
G. J. J.
Winands
,
Z.
Liu
,
A. J. M.
Pemen
,
E. J. M.
Van Heesch
, and
K.
Yan
, “
Long lifetime, triggered, spark-gap switch for repetitive pulsed power applications
,”
Rev. Sci. Instrum.
76
(
8
),
085107
(
2005
).
13.
F.
Hegeler
,
M. C.
Myers
,
M. F.
Wolford
,
J. D.
Sethian
, and
A. M.
Fielding
, “
Low jitter, high voltage, repetitive laser triggered gas switches
,”
IEEE Trans. Dielectr. Electr. Insul.
20
(
4
),
1168
1188
(
2013
).
14.
M. F.
Wolford
,
M. C.
Myers
,
F.
Hegeler
, and
J. D.
Sethian
, “
Dynamics of laser triggered, gas-insulated spark gaps during repetitive operation
,”
IEEE Trans. Plasma Sci.
44
(
10
),
2410
2423
(
2016
).
15.
B. M.
Luther
,
L.
Furfaro
,
A.
Klix
, and
J. J.
Rocca
, “
Femtosecond laser triggering of a sub-100 picosecond jitter high-voltage spark gap
,”
Appl. Phys. Lett.
79
(
20
),
3248
3250
(
2001
).
16.
J.-N.
Li
,
L.-S.
Xie
,
W.
Wu
, and
S.
He
, “
Design and experiment of a 4-MV self-triggered switch
,”
IEEE Trans. Plasma Sci.
50
(
1
),
97
102
(
2022
).
17.
A. J. M.
Pemen
,
E. J. M.
Van Heesch
, and
L.
Zhen
, “
Synchronous pulse systems
,”
IEEE Trans. Plasma Sci.
40
(
4
),
1198
1204
(
2012
).
18.
C.
Cho
and
Y.-S.
Jin
, “
Rotary trigger double spark gap switch for repetitive pulse generator and production of silver nanocolloid
,”
Rev. Sci. Instrum.
89
(
8
),
084707
(
2018
).
19.
W.
Tie
,
C.
Meng
,
Y.
Zhang
,
Z.
Yan
, and
Q.
Zhang
, “
Analysis on discharge process of a plasma-jet triggered gas spark switch
,”
Plasma Sci. Technol.
20
(
1
),
014009
(
2018
).
20.
Y.
Li
,
J.
Liu
,
W.
Xu
,
H.
Xiao
,
Z.
Zhang
,
X.
Zhang
, and
M.
He
, “
A plasma-triggered gas switch
,”
Rev. Sci. Instrum.
89
(
9
),
094707
(
2018
).
21.
L.
Chen
,
L.
Yang
,
A.
Qiu
,
D.
Huang
, and
S.
Liu
, “
Effects of the injected plasma on the breakdown process of the trigatron gas switch under low working coefficient
,”
Phys. Plasmas
25
(
1
),
013523
(
2018
).
22.
W.
Tie
,
S.
Liu
,
X.
Liu
,
Q.
Zhang
,
L.
Pang
, and
L.
Liu
, “
A novel low-jitter plasma-jet triggered gas switch operated at a low working coefficient
,”
Rev. Sci. Instrum.
85
(
2
),
023504
(
2014
).
23.
Y.
Liu
,
J. J.
Brown
,
D. C. W.
Lo
, and
S. R.
Forrest
, “
Optically powered optical interconnection system
,”
IEEE Photonics Technol. Lett.
1
(
1
),
21
23
(
1989
).
24.
J.-G.
Werthen
and
M.
Cohen
, “
Photonic power: Delivering power over fiber for optical networks
,” in
2006 International Conference on Photonics in Switching
(
IEEE
,
Herakleion, Greece
,
2006
), pp.
1
3
.
25.
L.
Collier
,
M. B.
Walls
,
J.
Dickens
,
J.
Mankowski
, and
A.
Neuber
, “
Solid state linear transformer driver (LTD) development for HPM sources
,” in
2015 IEEE Pulsed Power Conference (PPC)
(
IEEE
,
Austin, TX
,
2015
), pp.
1
4
.
26.
L.
Collier
,
J.
Dickens
,
J.
Mankowski
, and
A.
Neuber
, “
Performance analysis of an all solid-state linear transformer driver
,”
IEEE Trans. Plasma Sci.
45
(
7
),
1755
1761
(
2017
).
27.
S. J.
MacGregor
,
S. M.
Turnbull
,
F. A.
Tuema
, and
O.
Farish
, “
Factors affecting and methods of improving the pulse repetition frequency of pulse-charged and DC-charged high-pressure gas switches
,”
IEEE Trans. Plasma Sci.
25
(
2
),
110
117
(
1997
).
28.
G.
Hartmann
and
I.
Gallimberti
, “
The influence of metastable molecules on the streamer progression
,”
J. Phys. D: Appl. Phys.
8
(
6
),
670
680
(
1975
).
29.
L.
Li
,
Z.
Zhao
,
Y.
Liu
,
C.
Li
,
J.
Ren
, and
J.
Li
, “
Repetitive gas-discharge closing switches for pulsed power applications
,”
IEEE Trans. Plasma Sci.
47
(
9
),
4237
4249
(
2019
).
30.
A.
Larsson
, “
Gas-discharge closing switches and their time jitter
,”
IEEE Trans. Plasma Sci.
40
(
10
),
2431
2442
(
2012
).
31.
L.
Chen
,
W.
Yang
,
H.
Fan
,
X.
Li
, and
Y.
Li
, “
The injected plasma triggered breakdown of the trigatron spark gap
,”
Phys. Plasmas
27
(
2
),
023501
(
2020
).
32.
A.
Bourdon
,
V. P.
Pasko
,
N. Y.
Liu
,
S.
Célestin
,
P.
Ségur
, and
E.
Marode
, “
Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations
,”
Plasma Sources Sci. Technol.
16
(
3
),
656
678
(
2007
).
You do not currently have access to this content.