Ultracold quantum gases are usually prepared in conservative traps for quantum simulation experiments. The atomic density inhomogeneity, together with the consequent position-dependent energy and time scales of cold atoms in traditional harmonic traps, makes it difficult to manipulate and detect the sample at a higher level. These problems are partially solved by optical box traps made of blue-detuned hollow beams. However, generating a high-quality hollow beam with high light efficiency for the box trap is challenging. Here, we present a scheme that combines the fixed optics, including axicons and prisms, to pre-shape a Gaussian beam into a hollow beam with a digital micromirror device (DMD) to improve the quality of the hollow beam further, providing a nearly ideal optical potential of various shapes for preparing highly homogeneous cold atoms. The highest power-law exponent of potential walls can reach a value over 100, and the light efficiency from a Gaussian to a hollow beam is also improved compared to direct optical shaping by a mask or a DMD. Combined with a one-dimensional optical lattice, a nearly ideal two-dimensional uniform quantum gas with different geometrical boundaries can be prepared for exploring quantum many-body physics to an unprecedented level.

1.
F.
Dalfovo
,
S.
Giorgini
,
L. P.
Pitaevskii
, and
S.
Stringari
, “
Theory of Bose-Einstein condensation in trapped gases
,”
Rev. Mod. Phys.
71
,
463
512
(
1999
).
2.
S.
Giorgini
,
L. P.
Pitaevskii
, and
S.
Stringari
, “
Theory of ultracold atomic fermi gases
,”
Rev. Mod. Phys.
80
,
1215
1274
(
2008
).
3.
I.
Bloch
,
J.
Dalibard
, and
W.
Zwerger
, “
Many-body physics with ultracold gases
,”
Rev. Mod. Phys.
80
,
885
964
(
2008
).
4.
C.
Chin
,
M.
Bartenstein
,
A.
Altmeyer
,
S.
Riedl
,
S.
Jochim
,
J. H.
Denschlag
, and
R.
Grimm
, “
Observation of the pairing gap in a strongly interacting fermi gas
,”
Science
305
,
1128
1130
(
2004
).
5.
Y.
Liao
,
A.
Rittner
,
T.
Paprotta
et al, “
Spin-imbalance in a one-dimensional fermi gas
,”
Nature
467
,
567
569
(
2010
).
6.
C. J.
Pethick
and
H.
Smith
,
Bose-Einstein Condensation in Dilute Gases
(
Cambridge University Press
,
2008
).
7.
T. P.
Meyrath
,
F.
Schreck
,
J. L.
Hanssen
,
C.-S.
Chuu
, and
M. G.
Raizen
, “
Bose-Einstein condensate in a box
,”
Phys. Rev. A
71
,
041604
(
2005
).
8.
A. L.
Gaunt
,
T. F.
Schmidutz
,
I.
Gotlibovych
,
R. P.
Smith
, and
Z.
Hadzibabic
, “
Bose–Einstein condensation of atoms in a uniform potential
,”
Phys. Rev. Lett.
110
,
200406
(
2013
).
9.
L.
Chomaz
,
L.
Corman
,
T.
Bienaimé
,
R.
Desbuquois
,
C.
Weitenberg
,
S.
Nascimbène
,
J.
Beugnon
, and
J.
Dalibard
, “
Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas
,”
Nat. Commun.
6
,
6162
(
2015
).
10.
B.
Mukherjee
,
Z.
Yan
,
P. B.
Patel
,
Z.
Hadzibabic
,
T.
Yefsah
,
J.
Struck
, and
M. W.
Zwierlein
, “
Homogeneous atomic fermi gases
,”
Phys. Rev. Lett.
118
,
123401
(
2017
).
11.
L.
Clark
,
A.
Gaj
,
L.
Feng
, and
C.
Chin
, “
Collective emission of matter-wave jets from driven Bose–Einstein condensates
,”
Nature
551
,
356
359
(
2017
).
12.
K.
Hueck
,
N.
Luick
,
L.
Sobirey
,
J.
Siegl
,
T.
Lompe
, and
H.
Moritz
, “
Two-dimensional homogeneous fermi gases
,”
Phys. Rev. Lett.
120
,
060402
(
2018
).
13.
J. L.
Ville
,
R.
Saint-Jalm
,
E.
Le Cerf
,
M.
Aidelsburger
,
S.
Nascimbène
,
J.
Dalibard
, and
J.
Beugnon
, “
Sound propagation in a uniform superfluid two-dimensional Bose gas
,”
Phys. Rev. Lett.
121
,
145301
(
2018
).
14.
C.
Eigen
,
J. A. P.
Glidden
,
R.
Lopes
,
E. A.
Cornell
,
R. P.
Smith
, and
Z.
Hadzibabic
, “
Universal prethermal dynamics of Bose gases quenched to unitarity
,”
Nature
563
,
221
224
(
2018
).
15.
L.
Baird
,
X.
Wang
,
S.
Roof
, and
J. E.
Thomas
, “
Measuring the hydrodynamic linear response of a unitary fermi gas
,”
Phys. Rev. Lett.
123
,
160402
(
2019
).
16.
P.
Christodoulou
,
M.
Galka
,
N.
Dogra
,
R.
Lopes
,
J.
Schmitt
, and
Z.
Hadzibabic
, “
Observation of first and second sound in a BKT superfluid
,”
Nature
594
,
191
194
(
2021
).
17.
X.
Li
,
S.
Wang
,
X.
Luo
,
Y.-Y.
Zhou
,
K.
Xie
,
H.-C.
Shen
,
Y.-Z.
Nie
,
Q.
Chen
,
H.
Hu
,
Y.-A.
Chen
,
X.-C.
Yao
, and
J.-W.
Pan
, “
Observation and quantification of the pseudogap in unitary fermi gases
,”
Nature
626
,
288
293
(
2024
).
18.
R.
Bause
,
A.
Schindewolf
,
R.
Tao
,
M.
Duda
,
X.-Y.
Chen
,
G.
Quéméner
,
T.
Karman
,
A.
Christianen
,
I.
Bloch
, and
X.-Y.
Luo
, “
Collisions of ultracold molecules in bright and dark optical dipole traps
,”
Phys. Rev. Res.
3
,
033013
(
2021
).
19.
N.
Navon
,
R. P.
Smith
, and
Z.
Hadzibabic
, “
Quantum gases in optical boxes
,”
Nat. Phys.
17
,
1334
1341
(
2021
).
20.
J. H.
McLeod
, “
The axicon: A new type of optical element
,”
J. Opt. Soc. Am.
44
,
592
597
(
1954
).
21.
I.
Manek
,
Y. B.
Ovchinnikov
, and
R.
Grimm
, “
Generation of a hollow laser beam for atom trapping using an axicon
,”
Opt. Commun.
147
,
67
70
(
1998
).
22.
B.
Mukherjee
, “
Homogeneous quantum gases: Strongly interacting fermions and rotating bosonic condensates
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
2022
.
23.
K. M.
Hueck
, “
A homogeneous, two-dimensional Fermi gases
,” Ph.D. thesis,
University of Hamburg
,
2017
.
24.
J. L.
Ville
,
T.
Bienaimé
,
R.
Saint-Jalm
,
L.
Corman
,
M.
Aidelsburger
,
L.
Chomaz
,
K.
Kleinlein
,
D.
Perconte
,
S.
Nascimbène
,
J.
Dalibard
, and
J.
Beugnon
, “
Loading and compression of a single two-dimensional Bose gas in an optical accordion
,”
Phys. Rev. A
95
,
013632
(
2017
).
You do not currently have access to this content.