The active magnetic compensation coil is of great significance for extensive applications, such as fundamental physics, aerospace engineering, national defense industry, and biological science. The magnetic shielding demand is increasing over past few decades, and better performances of the coil are required. To maintain normal operating conditions for some sensors, active magnetic compensation coils are often used to implement near-zero field environments. Many coil design methods have been developed to design the active compensation coil for different fields. It is opportune to review the development and challenges associated with active magnetic compensation coils. Active magnetic compensation coils are reviewed in this paper in terms of design methods, technology, and applications. Furthermore, the operational principle and typical structures of the coil are elucidated. The developments of the forward design method, inverse design method, and optimization algorithm are presented. Principles of various design methods and their respective advantages and disadvantages are described in detail. Finally, critical challenges in the active magnetic compensation coil techniques and potential research directions have been highlighted.

1.
R. A.
Lemdiasov
and
R.
Ludwig
, “
A stream function method for gradient coil design
,”
Concepts Magn. Reson., Part B
26B
(
1
),
67
80
(
2005
).
2.
N.
Sulaiman
,
J.
Yunas
,
G.
Sugandi
, and
M.
Burhanuddin Yeop
, “
Physical characteristic analysis of solenoid-based coil structure
,”
Adv. Mater. Res.
403–408
,
3739
(
2011
).
3.
L.
Boesten
and
Y.
Yamashita
, “
Three-dimensional magnetic preshielding with a single folded coil
,”
J. Phys. E: Sci. Instrum.
16
(
12
),
1254
1258
(
1983
).
4.
X.
Ma
,
Q.
Zhang
,
X.
Chen
, and
G.
Wu
, “
Geomagnetic shielding property and mechanism of Fe–Ni laminated composite
,”
Acta Metall. Sin. (Engl. Lett.)
27
(
5
),
918
923
(
2014
).
5.
K.
Sinokita
,
R.
Toda
, and
Y.
Sasaki
, “
Construction of compact MRI magnet with superconducting shield
,”
J. Phys.: Conf. Ser.
150
(
1
),
012041
(
2009
).
6.
Z.
Liang
, “
An optimal design of actively shielded MRI superconducting magnet
,”
IEEE Trans. Appl. Supercond.
29
(
2
),
4900404
(
2019
).
7.
C.
Gu
,
S.
Chen
,
T.
Pang
, and
T.-M.
Qu
, “
Experimental realization of open magnetic shielding
,”
Appl. Phys. Lett.
110
(
19
),
193505
(
2017
).
8.
N.
Holmes
,
T. M.
Tierney
,
J.
Leggett
,
E.
Boto
,
S.
Mellor
,
G.
Roberts
,
R. M.
Hill
,
V.
Shah
,
G. R.
Barnes
,
M. J.
Brookes
, and
R.
Bowtell
, “
Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography
,”
Sci. Rep.
9
(
1
),
14196
(
2019
).
9.
I. M. V.
Caminiti
,
A.
Formisano
,
M. C.
Lupoli
, and
R.
Martone
, “
A new approach to design flexible magnetic active shielding
,”
IEEE Trans. Magn.
49
(
2
),
791
794
(
2013
).
10.
N.
Holmes
,
M.
Rea
,
J.
Chalmers
,
J.
Leggett
,
L. J.
Edwards
,
P.
Nell
,
S.
Pink
,
P.
Patel
,
J.
Wood
,
N.
Murby
et al, “
A lightweight magnetically shielded room with active shielding
,”
Sci. Rep.
12
(
1
),
13561
(
2022
).
11.
K.
Yang
,
D.
Wu
,
W.
Gao
,
T.
Ni
,
Q.
Zhang
,
H.
Zhang
, and
D.
Huang
, “
Calibration of SQUID magnetometers in multichannel MCG system based on bi-planar coil
,”
IEEE Trans. Instrum. Meas.
71
,
1002209
(
2022
).
12.
T.
Liu
,
A.
Schnabel
,
J.
Voigt
,
W.
Kilian
,
Z.
Sun
et al, “
A built-in coil system attached to the inside walls of a magnetically shielded room for generating an ultra-high magnetic field homogeneity
,”
Rev. Sci. Instrum.
92
(
2
),
24709
(
2021
).
13.
M.
Bodmer
,
F.
Giuliani
,
M.
Gold
,
A.
Christou
, and
M.
Batygov
, “
Design of an active magnetic field compensation system for MiniCLEAN
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
697
,
99
106
(
2013
).
14.
J.
Li
,
W.
Quan
,
B.
Zhou
,
Z.
Wang
,
J.
Lu
,
Z.
Hu
,
G.
Liu
, and
J.
Fang
, “
SERF atomic magnetometer–recent advances and applications: A review
,”
IEEE Sens. J.
18
(
20
),
8198
8207
(
2018
).
15.
S.
Odawara
,
K.
Muramatsu
,
S.
Komori
,
K.
Kamata
,
K.
Yamazaki
et al, “
Method for evaluating shielding factor of double layered magnetically-shielded rooms for uniform magnetic field using exciting coils placed on one side
,”
IEEE Trans. Magn.
46
(
6
),
2357
2360
(
2010
).
16.
K.
Schweikert
,
R.
Krieg
, and
F.
Noack
, “
A high-field air-cored magnet coil design for fast-field-cycling NMR
,”
J. Magn. Reson.
78
(
1
),
77
96
(
1988
).
17.
F.
Jia
,
S.
Littin
,
K. J.
Layton
,
S.
Kroboth
,
H.
Yu
, and
M.
Zaitsev
, “
Design of a shielded coil element of a matrix gradient coil
,”
J. Magn. Reson.
281
,
217
228
(
2017
).
18.
D. S.
Batista
,
F.
Granziera
,
M. C.
Tosin
, and
L. F.
de Melo
, “
Three-axial Helmholtz coil design and validation for aerospace applications
,”
IEEE Trans. Aerosp. Electron. Syst.
54
(
1
),
392
403
(
2018
).
19.
J.
Fang
and
J.
Qin
, “
In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer
,”
Rev. Sci. Instrum.
83
(
10
),
227
(
2012
).
20.
Y.
Wei
,
L.
Cheng
,
Y.
Niu
,
S.
Chen
, and
C.
Ye
, “
Nested magnetic field compensation with regulated coefficients for bio-magnetic field measurement
,”
IEEE Trans. Instrum. Meas.
72
,
9503809
(
2023
).
21.
N.
Holmes
,
J.
Leggett
,
E.
Boto
,
G.
Roberts
,
R. M.
Hill
,
T. M.
Tierney
,
V.
Shah
,
G. R.
Barnes
,
M. J.
Brookes
,
R.
Bowtell
et al, “
A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
,”
NeuroImage
181
,
760
774
(
2018
).
22.
S.
Tumanski
, “
Fundamentals of magnetic measurements
,” in
Handbook of Magnetic Measurements
, 1st ed. (
CRC Press
,
2011
), pp.
85
93
.
23.
K.
Wang
,
J.
Sun
,
D.
Ma
,
S.
Li
,
Y.
Gao
,
J.
Lu
, and
J.
Zhang
, “
Octagonal three-dimensional shim coils structure and design in atomic sensors for magnetic field detection
,”
IEEE Sens. J.
22
(
6
),
5596
5605
(
2022
).
24.
J.
Tatum
, “
The magnetic effect of an electric current
,” in
Electricity and Magnetism
(
2006
), pp.
139
140
.
25.
Y.
Wang
,
X.
Xin
,
F.
Liu
, and
S.
Crozier
, “
Spiral gradient coil design for use in cylindrical MRI systems
,”
IEEE Trans. Biomed. Eng.
65
(
4
),
911
920
(
2018
).
26.
Y.
Zhang
,
Y.-J.
Li
,
Q.-Y.
Jiang
,
Z.-G.
Wang
,
T.
Xia
, and
H.
Luo
, “
General analytical method of designing shielded coils for arbitrary axial magnetic field
,”
Chin. Phys. B
28
(
11
),
110702
(
2019
).
27.
F.
Roméo
and
D. I.
Hoult
, “
Magnet field profiling: Analysis and correcting coil design
,”
Magn. Reson. Med.
1
(
1
),
44
65
(
1984
).
28.
J. L.
Kirschvink
, “
Uniform magnetic fields and double-wrapped coil systems: Improved techniques for the design of bioelectromagnetic experiments
,”
Bioelectromagnetics
13
(
5
),
401
411
(
1992
).
29.
D. M.
Ginsberg
and
M. J.
Melchner
, “
Optimum geometry of saddle shaped coils for generating a uniform magnetic field
,”
Rev. Sci. Instrum.
41
(
1
),
122
123
(
1970
).
30.
H.
Zhang
,
S.
Zou
, and
X.
Chen
, “
Ingenious method for measuring the non-orthogonal angle of the saddle-shaped coils of an SERF atomic magnetometer system
,”
IEEE Trans. Magn.
52
(
10
),
4002906
(
2016
).
31.
H.
Zhao
,
S.
Crozier
, and
D. M.
Doddrell
, “
Compact clinical MRI magnet design using a multi-layer current density approach
,”
Magn. Reson. Med.
45
(
2
),
331
340
(
2001
).
32.
R.
Turner
, “
Gradient coil design: A review of methods
,”
Magn. Reson. Imaging
11
(
7
),
903
920
(
1993
).
33.
R.
Turner
, “
A target field approach to optimal coil design
,”
J. Phys. D: Appl. Phys.
19
(
8
),
147
151
(
1986
).
34.
C. P.
Bidinosti
,
I. S.
Kravchuk
, and
M. E.
Hayden
, “
Active shielding of cylindrical saddle-shaped coils: Application to wire-wound RF coils for very low field NMR and MRI
,”
J. Magn. Reson.
177
(
1
),
31
43
(
2005
).
35.
R.
Turner
, “
Minimum inductance coils
,”
J. Phys. E: Sci. Instrum.
21
(
10
),
948
952
(
1988
).
36.
E. A.
Chronik
and
B. K.
Rutt
, “
Constrained length minimum inductance gradient coil design
,”
Magn. Reson. Med.
39
(
2
),
270
278
(
1998
).
37.
L. K.
Forbes
and
S.
Crozier
, “
A novel target-field method for finite-length magnetic resonance shim coils: I. Zonal shims
,”
J. Phys. D: Appl. Phys.
34
(
24
),
3447
3455
(
2001
).
38.
L. K.
Forbes
and
S.
Crozier
, “
A novel target-field method for finite-length magnetic resonance shim coils: II. Tesseral shims
,”
J. Phys. D: Appl. Phys.
35
(
9
),
839
849
(
2002
).
39.
L. K.
Forbes
,
M. A.
Brideson
, and
S.
Crozier
, “
A target-field method to design circular biplanar coils for asymmetric shim and gradient fields
,”
IEEE Trans. Magn.
41
(
6
),
2134
2144
(
2005
).
40.
L. K.
Forbes
,
M. A.
Brideson
,
S.
Crozier
, and
P. T.
While
, “
An analytical approach to the design of quiet cylindrical asymmetric gradient coils in MRI
,”
Concepts Magn. Reson., Part B
31B
(
4
),
218
236
(
2007
).
41.
A.
Phair
,
M.
Brideson
, and
L. K.
Forbes
, “
A cylindrical basis set for shim coil design in magnetic resonance imaging
,”
Concepts Magn. Reson., Part B
48B
(
3
),
e21400
(
2018
).
42.
W.
Liu
,
D.
Zu
,
X.
Tang
, and
H.
Guo
, “
Target-field method for MRI biplanar gradient coil design
,”
J. Phys. D: Appl. Phys.
40
(
15
),
4418
4424
(
2007
).
43.
W.
Liu
,
X.
Tang
, and
D.
Zu
, “
A novel target-field approach to design bi-planar shim coils for permanent-magnet MRI
,”
Concepts Magn. Reson., Part B
37B
(
1
),
29
38
(
2010
).
44.
X. F.
You
,
L. L.
Hu
,
W. H.
Yang
,
Z.
Wang
, and
H. X.
Wang
, “
Biplanar shim coil design for 1.5 T permanent magnet of in vivo animal MRI
,”
IEEE Trans. Appl. Supercond.
20
(
3
),
1045
1049
(
2010
).
45.
R.
Zhang
,
J.
Xu
,
Y.
Fu
,
Y.
Li
,
K.
Huang
,
J.
Zhang
, and
J.
Fang
, “
An optimized target-field method for MRI transverse biplanar gradient coil design
,”
Meas. Sci. Technol.
22
(
12
),
125505
(
2011
).
46.
G.
Hu
,
Z.
Ni
, and
Q.
Wang
, “
A novel target-field method using LASSO algorithm for shim and gradient coil design
,”
IEEE Trans. Appl. Supercond.
22
(
3
),
4900604
(
2012
).
47.
H.
Sanchez Lopez
,
Y.
Xu
,
P. N.
Andono
,
Y.
Chang
, and
X.
Yang
, “
Planar gradient coil design using L1 and L2 norms
,”
Appl. Magn. Reson.
49
(
9
),
959
973
(
2018
).
48.
J.
Wang
,
B.
Zhou
,
X.
Liu
,
W.
Wu
,
L.
Chen
,
B.
Han
,
J.
Fang
et al, “
An improved target-field method for the design of uniform magnetic field coils in miniature atomic sensors
,”
IEEE Access
7
,
74800
74810
(
2019
).
49.
J.
Wang
,
B.
Zhou
,
W.
Wu
,
L.
Chen
, and
J.
Fang
, “
Uniform field coil design based on the target-field method in miniature atomic sensors
,”
IEEE Sens. J.
19
(
8
),
2895
2901
(
2019
).
50.
F.
Zhao
,
J.
Wang
,
F.
Lu
,
W.
Wu
,
B.
Han
,
B.
Zhou
, and
X.
Zhou
, “
Design of highly linear gradient field coils based on an improved target-field method
,”
IEEE Sens. J.
21
(
14
),
16256
16263
(
2021
).
51.
K.
Matsuzawa
,
K.
Kose
, and
Y.
Terada
, “
A new method for optimizing performances of gradient coils based on singular value decomposition and genetic algorithm
,” in
Proceedings of 25th Annual Meeting ISMRM
,
Honolulu
,
2017
.
52.
R. A.
Compton
, “
Gradient-coil apparatus for a magnetic resonance system
,”
U.S. patent US04456881A (Jan
.
1984
).
53.
S.
Pissanetzky
, “
Minimum energy MRI gradient coils of general geometry
,”
Meas. Sci. Technol.
3
(
7
),
667
673
(
1992
).
54.
P. T.
While
,
L. K.
Forbes
, and
S.
Crozier
, “
3D gradient coil design—Toroidal surfaces
,”
J. Magn. Reson.
198
(
1
),
31
40
(
2009
).
55.
H.
Sanchez
,
F.
Liu
,
A.
Trakic
,
E.
Weber
, and
S.
Crozier
, “
Three-dimensional gradient coil structures for magnetic resonance imaging designed using fuzzy membership functions
,”
IEEE Trans. Magn.
43
(
9
),
3558
3566
(
2007
).
56.
Y.
Hu
,
Q.
Wang
,
X.
Hu
,
X.
Zhu
,
S.
Crozier
,
Y.
Wang
, and
F.
Liu
, “
A simulation study on the design of gradient coils in MRI for the imaging area above the patient bed
,”
Meas. Sci. Technol.
28
(
3
),
035402
(
2017
).
57.
C.
Niu
,
Q.
Wang
,
Y.
Hu
,
Y.
Wang
et al, “
Numerical design of high-efficiency whole-body gradient coils with a hybrid cylindrical-planar structure
,”
IEEE Trans. Biomed. Eng.
66
(
6
),
1628
1636
(
2019
).
58.
D.
Tamada
,
T.
Nakamura
, and
K.
Kose
, “
A gradient coil design for a high-temperature superconducting bulk magnet using the finite-difference method
,”
Supercond. Sci. Technol.
28
(
9
),
095010
(
2015
).
59.
W. B.
Handler
,
G.
Bindseil
,
R.
Chaddock
,
B.
Dalrymple
,
J. S.
Gati
,
K. M.
Gilbert
,
C. T.
Harris
,
M. L.
Klassen
,
J.
Peterson
,
F.
Van Sas
, and
B. A.
Chronik
, “
Design and construction of a gradient coil for high resolution marmoset imaging
,”
Biomed. Phys. Eng. Express
6
(
4
),
045022
(
2020
).
60.
D.
Pan
,
S.
Lin
,
L.
Li
,
J.
Li
,
Y.
Jin
,
Z.
Sun
, and
T.
Liu
, “
Research on the design method of uniform magnetic field coil based on the MSR
,”
IEEE Trans. Ind. Electron.
67
(
2
),
1348
1356
(
2020
).
61.
M.
Poole
and
R.
Bowtell
, “
Novel gradient coils designed using a boundary element method
,”
Concepts Magn. Reson., Part B
31B
(
3
),
162
175
(
2007
).
62.
X. F.
You
,
W. H.
Yang
,
T.
Song
,
H. X.
Wang
, and
Z.
Wang
, “
Asymmetric gradient coil design by numerical approach for MRI brain imaging
,”
IEEE Trans. Appl. Supercond.
22
(
3
),
4401904
(
2012
).
63.
L.
Marin
,
H.
Power
,
R. W.
Bowtell
,
C.
Cobos Sanchez
,
A. A.
Becker
,
P.
Glover
, and
A.
Jones
, “
Numerical solution for an inverse MRI problem using a regularised boundary element method
,”
Eng. Anal. Boundary Elem.
32
(
8
),
658
675
(
2008
).
64.
G.
Shou
,
L.
Xia
,
F.
Liu
,
M.
Zhu
,
Y.
Li
, and
S.
Crozier
, “
MRI coil design using boundary-element method with regularization technique: A numerical calculation study
,”
IEEE Trans. Magn.
46
(
4
),
1052
1059
(
2010
).
65.
X.
Deng
,
Y.
Huang
,
C.
Wan
,
L.
Jiang
,
G.
Gao
,
Z.
Huang
, and
J.
Zhang
, “
High-uniformity calculation method of four-coil configuration in large-caliber magnetic field immunity testing system
,”
IEEE Trans. Plasma Sci.
50
(
6
),
1977
1986
(
2022
).
66.
Q.
Feng
,
T.
Xin
,
W.
Weimin
,
S.
Yifei
,
L.
Shaopoo
, and
J.
Zhongde
, “
A new simulated annealing method of designing NMR biplanar shim coils
,”
Prog. Nat. Sci.
16
,
747
(
2006
).
67.
E. C.
Wong
,
A.
Jesmanowicz
, and
J. S.
Hyde
, “
Coil optimization for MRI by conjugate gradient descent
,”
Magn. Reson. Med.
21
(
1
),
39
48
(
1991
).
68.
B. J.
Fisher
,
N.
Dillon
,
T. A.
Carpenter
, and
L. D.
Hall
, “
Design of a biplanar gradient coil using a genetic algorithm
,”
Magn. Reson. Imaging
15
(
3
),
369
376
(
1997
).
69.
H.
Panepucci
,
D.
Tomasi
,
E. C.
Caparelli
,
B.
Foerster
, and
R.
Xavier
, “
Optimization of gradient coils using the fast simulated annealing method
,”
AIP Conf. Proc.
538
(
1
),
134
148
(
2000
).
70.
J.
Wang
,
X.
Song
,
W.
Zhou
,
Y.
Le
, and
X.
Ning
, “
Hybrid optimal design of biplanar coils with uniform magnetic field or field gradient
,”
IEEE Trans. Ind. Electron.
68
(
11
),
11544
11553
(
2021
).
71.
J.
Xu
,
X.
Kang
,
Z.
Fan
,
Z.
Zhang
,
Y.
Li
,
X.
Dong
, and
X.
Gao
, “
Design of highly uniform magnetic field coils with wolf pack algorithm
,”
IEEE Sens. J.
21
(
4
),
4412
4424
(
2021
).
72.
Q.
Cao
,
Y.
Liu
,
T.
Zhao
,
K.
Yang
,
C.
Tang
,
R.
Tao
,
D.
Hu
, and
Y.
Zhai
, “
Design of highly uniform magnetic field cylinder coils based on grey wolf optimizer algorithm in atomic sensors
,”
IEEE Sens. J.
21
(
18
),
19922
19929
(
2021
).
73.
J.
Wang
,
X.
Song
,
Y.
Le
,
W.
Wu
,
B.
Zhou
, and
X.
Ning
, “
Design of self-shielded uniform magnetic field coil via modified pigeon-inspired optimization in miniature atomic sensors
,”
IEEE Sens. J.
21
(
1
),
315
324
(
2021
).
74.
H.
Pang
,
W.
Fan
,
F.
Liu
,
L.
Duan
,
S.
Liu
,
J.
Wang
, and
W.
Quan
, “
Design of highly uniform field coils based on the magnetic field coupling model and improved PSO algorithm in atomic sensors
,”
IEEE Trans. Instrum. Meas.
71
,
1502611
(
2022
).
75.
X.
Du
,
Z.
Zhu
,
L.
Zhao
,
G.
Zhang
,
F.
Ning
,
Z.
Liu
,
Z.
Hou
,
M.
Wang
,
W.
Ma
, and
W.
Yao
, “
Design of cylindrical transverse gradient coil for 1.5 T MRI system
,”
IEEE Trans. Appl. Supercond.
22
(
3
),
4402004
(
2012
).
76.
Q.
Cao
,
D.
Pan
,
J.
Li
,
Y.
Jin
,
Z.
Sun
,
S.
Lin
,
G.
Yang
, and
L.
Li
, “
Optimization of a coil system for generating uniform magnetic fields inside a cubic magnetic shield
,”
Energies
11
(
3
),
608
(
2018
).
77.
Y.
Lu
,
Y.
Yang
,
M.
Zhang
,
R.
Wang
,
B.
Zhu
, and
L.
Jiang
, “
Magnetic enhancement-based multi-objective optimization design of the large-scale high-intensity homogeneous magnetic field coil system
,”
IEEE Trans. Magn.
58
(
6
),
8001309
(
2022
).
78.
B.
Han
,
J.
Yang
,
X.
Zhang
,
M.
Shi
,
S.
Yuan
, and
L.
Wang
, “
A magnetic compensation system composed of biplanar coils avoiding coupling effect of magnetic shielding
,”
IEEE Trans. Ind. Electron.
70
(
2
),
2057
2065
(
2023
).
79.
Y.
Jin
,
L.
Li
,
D.
Pan
,
K.
Song
,
S.
Lou
,
Z.
Zou
, and
Z.
Sun
, “
Analysis and design of a uniform magnetic field coil with a magnetic shield based on an improved analytical model
,”
IEEE Trans. Ind. Electron.
69
(
3
),
3068
3077
(
2022
).
80.
J.
Yang
,
X.
Zhang
,
B.
Han
,
J.
Wang
, and
L.
Wang
, “
Design of biplanar coils for degrading residual field in magnetic shielding room
,”
IEEE Trans. Instrum. Meas.
70
,
6010110
(
2021
).
81.
T.
Liu
,
J.
Voigt
,
Z.
Sun
,
A.
Schnabel
, and
L.
Li
, “
Two-step mirror model for the optimization of the magnetic field generated by coils inside magnetic shielding
,” in
Conference on Precision Electromagnetic Measurements (CPEM)
(
IEEE
,
2018
), pp.
1
2
.
82.
Y.
Lu
,
Y.
Yang
,
R.
Wang
,
M.
Zhang
, and
B.
Qin
, “
Toward ultra-low homogeneous magnetic field generation: Space-efficient coil configurations based on the MSR
,”
J. Phys. D: Appl. Phys.
54
(
34
),
345002
(
2021
).
83.
M.
Packer
,
P. J.
Hobson
,
N.
Holmes
,
J.
Leggett
,
P.
Glover
,
M. J.
Brookes
et al, “
Planar coil optimization in a magnetically shielded cylinder
,”
Phys. Rev. Appl.
15
(
6
),
064006
(
2021
).
84.
B.
Dorri
and
M. E.
Vermilyea
, “
Method of optimizing passive shim placement in magnetic resonance magnets
,” U.S. patent 5,045,794 (
3 September 1991
).
85.
Y.
Hu
,
Q.
Wang
,
X.
Zhu
,
C.
Niu
, and
Y.
Wang
, “
Optimization magnetic resonance imaging shim coil using second derivative discretized stream function
,”
Concepts Magn. Reson., Part B
47B
(
1
),
21352
(
2017
).
86.
K.
Wachowicz
, “
Evaluation of active and passive shimming in magnetic resonance imaging
,”
Res. Rep. Nucl. Med.
2014
,
1
.
87.
G.
Hu
,
Y.
Peng
,
W.
Zhao
, and
X.
Tang
, “
Gradient coil design in permanent magnet MRI
,”
J. Iron Steel Res. Int.
13
,
419
422
(
2006
).
88.
V.
Vegh
,
Q. M.
Tieng
,
I. M.
Brereton
, and
G. J.
Galloway
, “
A wrapped edge transverse gradient coil design for increased gradient homogeneity
,”
Concepts Magn. Reson., Part B
35B
(
3
),
139
152
(
2009
).
89.
R. S.
Ahmad
,
A.
Shaari
, and
C.
Teong Han
, “
Magnetic field simulation of Golay coil
,”
J. Fundam. Sci.
4
(
2
),
19
(
2014
).
90.
R.
Zhang
,
W.
Xiao
,
Y.
Ding
,
Y.
Feng
,
X.
Peng
et al, “
Recording brain activities in unshielded Earth’s field with optically pumped atomic magnetometers
,”
Sci. Adv.
6
(
24
),
8792
(
2020
).
91.
Z.
Ding
,
Z.
Huang
,
M.
Pang
, and
B.
Han
, “
Design of bi-planar coil for acquiring near-zero magnetic environment
,”
IEEE Trans. Instrum. Meas.
71
,
6001310
(
2022
).
92.
G.
Roberts
,
N.
Holmes
,
N.
Alexander
,
E.
Boto
,
J.
Leggett
,
R. M.
Hill
,
V.
Shah
,
M.
Rea
,
R.
Vaughan
,
E. A.
Maguire
et al, “
Towards OPM-MEG in a virtual reality environment
,”
NeuroImage
199
,
408
417
(
2019
).
93.
R. M.
Hill
,
E.
Boto
,
M.
Rea
,
N.
Holmes
,
J.
Leggett
et al, “
Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system
,”
NeuroImage
219
,
116995
(
2020
).
94.
X.
Liu
,
C.
Wu
,
L.
Zhang
,
T.
Wen
, and
S.
Zheng
, “
Design and test of a magnetic-field compensation coil without interference with the door of a magnetically shielded room
,”
IEEE Trans. Instrum. Meas.
71
,
6006308
(
2022
).
95.
I.
Sasada
,
E.
Paperno
, and
H.
Koide
, “
Design of a large-scale vertical open-structure cylindrical shield employing magnetic shaking
,”
J. Appl. Phys.
87
(
9
),
5962
5964
(
2000
).
96.
S.
Odawara
,
K.
Muramatsu
,
Y.
Gao
,
S.
Komori
,
K.
Yamazaki
,
T.
Shinnoh
,
T.
Yamaguchi
,
M.
Sakakibara
, and
M.
Shimokawa
, “
Conditions of exciting coils used in evaluation of shielding factor of magnetically shielded rooms for uniform magnetic field
,”
IEEE Trans. Magn.
47
(
10
),
4274
4277
(
2011
).
97.
T.
Liu
,
L.
Li
,
A.
Schnabel
,
Z.
Sun
, and
J.
Voigt
, “
Analytical solutions for the shielding factor of spherical magnetic shields measured with external excitation coils
,”
IEEE Magn. Lett.
10
,
2111204
(
2019
).
98.
S.
Knappe-Grueneberg
,
A.
Schnabel
,
G.
Wuebbeler
, and
M.
Burghoff
, “
Influence of demagnetization coil configuration on residual field in an extremely magnetically shielded room: Model and measurements
,”
J. Appl. Phys.
103
(
7
),
07E925
(
2008
).
99.
F.
Thiel
,
A.
Schnabel
,
S.
Knappe-Grüneberg
,
D.
Stollfuß
, and
M.
Burghoff
, “
Demagnetization of magnetically shielded rooms
,”
Rev. Sci. Instrum.
78
(
3
),
35106
(
2007
).
100.
J.
Bork
,
H. D.
Hahlbohm
,
R.
Klein
, and
A.
Schnabel
, “
The 8-layered magnetically shielded room of the PTB: Design and construction
,” in
Biomag 2000–Proceedings of the 12th International Conference on Biomagnetism
,
Espoo, Finland
,
2001
.
101.
I.
Altarev
,
E.
Babcock
,
D.
Beck
,
M.
Burghoff
,
S.
Chesnevskaya
,
T.
Chupp
,
S.
Degenkolb
,
I.
Fan
,
P.
Fierlinger
,
A.
Frei
,
E.
Gutsmiedl
et al, “
A magnetically shielded room with ultra low residual field and gradient
,”
Rev. Sci. Instrum.
85
(
7
),
75106
(
2014
).
102.
J.
Iivanainen
,
R.
Zetter
,
M.
Grön
,
K.
Hakkarainen
, and
L.
Parkkonen
, “
On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers
,”
NeuroImage
194
,
244
258
(
2019
).
103.
J.
Iivanainen
,
R.
Zetter
, and
L.
Parkkonen
, “
Potential of on-scalp MEG: Robust detection of human visual gamma-band responses
,”
Hum. Brain Mapp.
41
(
1
),
150
161
(
2020
).
104.
N. J.
Ayres
,
G.
Ban
,
G.
Bison
,
K.
Bodek
,
V.
Bondar
,
T.
Bouillaud
,
B.
Clement
,
E.
Chanel
,
P.-J.
Chiu
,
C. B.
Crawford
et al, “
The very large n2EDM magnetically shielded room with an exceptional performance for fundamental physics measurements
,”
Rev. Sci. Instrum.
93
(
9
),
095105
(
2022
).
105.
A.
Borna
,
T. R.
Carter
,
J. D.
Goldberg
,
A. P.
Colombo
,
Y. Y.
Jau
,
C.
Berry
,
J.
McKay
,
J.
Stephen
,
M.
Weisend
, and
P. D. D.
Schwindt
, “
A 20-channel magnetoencephalography system based on optically pumped magnetometers
,”
Phys. Med. Biol.
62
(
23
),
8909
8923
(
2017
).
106.
A.
Borna
,
T. R.
Carter
,
A. P.
Colombo
,
Y. Y.
Jau
,
J.
Mckay
,
M.
Weisend
et al, “
Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system
,”
PLoS One
15
(
1
),
e0227684
(
2020
).
107.
T.
Oida
,
M.
Tsuchida
, and
T.
Kobayashi
, “
Direct detection of magnetic resonance signals in ultra-low field MRI using optically pumped atomic magnetometer with ferrite shields: Magnetic field analysis and simulation studies
,”
IEEE Trans. Magn.
48
(
11
),
2877
2880
(
2012
).
108.
T.
Oida
,
Y.
Ito
,
K.
Kamada
, and
T.
Kobayashi
, “
Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals
,”
J. Magn. Reson.
217
,
6
9
(
2012
).
109.
G.
Zhang
,
S.
Huang
,
F.
Xu
,
Z.
Hu
, and
Q.
Lin
, “
Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography
,”
Opt. Express
27
(
2
),
597
607
(
2019
).
You do not currently have access to this content.