A rod pinch diode (RPD) is a feasible load configuration to generate a high-brightness, small-size hard x-ray radiation source. In this paper, the radiography performance of a wire-shorted low-impedance RPD on a compactly designed table-top driver (WRPD-1) is demonstrated for the first time. The driver consists of four high-power discharge branches connected in parallel, with each branch consisting of two metal-film capacitors and one multigap field-distortion switch in series. The four branches are triggered synchronously to generate a fast-rising current pulse: the inductance of the load section at the short circuit is ∼10 nH, and the short-circuit current amplitude is ∼325 kA at ±90 kV charging voltage, with a 10%–90% rise time of 110 ns. With a low-impedance RPD shorted by an 18-µm-diameter aluminum wire, a quasi-spherical x-ray focal spot with diameter <0.6 mm (width of the half-maximum grayscale) and a pulse duration of ∼25 ns (half-width of the radiation pulse) is obtained at ±70 kV charging voltage, and the imaging resolution excels 10 lp/mm under 1.56× magnification. According to the transmission–absorption x-ray spectrum estimation, the average emitted photon energy is ∼30 keV with a distinct peak in the 10–15 keV range that corresponds to the L-lines of tungsten, and the total energy of photons >10 keV reaches ∼1.16 J. The present results show that the device can serve well for the flash radiography diagnosis and potentially as an efficient light source for dynamic x-ray diffraction.

1.
G. S.
Cunningham
and
C.
Morris
, “
The development of flash radiography
,”
Los Alamos Sci.
28
,
76
91
(
2003
).
2.
R. J.
Commisso
,
G.
Cooperstein
,
D. D.
Hinshelwood
,
D.
Mosher
,
P. F.
Ottinger
,
S. J.
Stephanakis
,
S. B.
Swanekamp
,
B. V.
Weber
, and
F. C.
Young
, “
Experimental evaluation of a megavolt rod-pinch diode as a radiography source
,”
IEEE Trans. Plasma Sci.
30
(
1
),
338
351
(
2002
).
3.
R. A.
Mahaffey
,
J.
Golden
,
S. A.
Goldstein
, and
G.
Cooperstein
, “
Intense electron-beam pinch formation and propagation in rod pinch diodes
,”
Appl. Phys. Lett.
33
(
9
),
795
797
(
1978
).
4.
B. V.
Weber
,
R. J.
Allen
,
R. J.
Commisso
,
G.
Cooperstein
,
D. D.
Hinshelwood
,
D.
Mosher
,
D. P.
Murphy
,
P. F.
Ottinger
,
D. G.
Phipps
,
J.
Schumer
et al, “
Radiographic properties of plasma-filled rod-pinch diodes
,”
IEEE Trans. Plasma Sci.
36
(
2
),
443
456
(
2008
).
5.
B. V.
Weber
,
R. J.
Allen
,
R. J.
Commisso
,
G.
Cooperstein
,
D. D.
Hinshelwood
,
D.
Mosher
,
D. P.
Murphy
,
P. F.
Ottinger
,
D. G.
Phipps
,
J. W.
Schumer
et al, “
Plasma-filled rod-pinch diode research on gamble II
,” in
2007 IEEE 16th International Pulsed Power Conference (PPC)
(
IEEE
,
2007
).
6.
S. A.
Sorokin
, “
Experiments with a plasma-filled rod-pinch diode on the MIG generator
,”
Tech. Phys.
56
,
957
962
(
2011
).
7.
B. V.
Weber
,
R. J.
Commisso
,
G.
Cooperstein
,
D. D.
Hinshelwood
,
D.
Mosher
,
P. F.
Ottinger
,
D. M.
Ponce
,
J. W.
Schumer
,
S. J.
Stephanakis
,
S. D.
Strasburg
et al, “
Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode
,”
Phys. Plasmas
11
(
5
),
2916
2927
(
2004
).
8.
S. A.
Sorokin
, “
Radial wire-array rod-pinch diodes
,”
IEEE Trans. Plasma Sci.
45
(
8
),
2268
2271
(
2017
).
9.
S. A.
Sorokin
, “
Formation of sub-millimeter-size powerful X-ray sources in low-impedance rod-pinch diodes
,”
Russ. Phys. J.
60
,
1520
1527
(
2018
).
10.
H.
Shi
,
C.
Zhang
,
P.
Zhang
,
Y.
Wang
,
W.
Yuan
,
L.
Chen
,
X.
Li
,
J.
Wu
, and
A.
Qiu
, “
Sub-millimeter hard X-ray source based on wire-shorted low-impedance rod pinch diode
,”
IEEE Trans. Plasma Sci.
51
(
4
),
1142
1149
(
2023
).
11.
X.
He
,
F.
Sun
,
X.
Jiang
,
Z.
Wang
,
Z.
Wan
, and
A.
Qiu
, “
Characteristics of switch prefire generated fault voltages transmitted in a four-stage LTD module
,”
IEEE Trans. Plasma Sci.
50
(
6
),
1904
1911
(
2022
).
12.
G. A.
Mesyats
,
T. A.
Shelkovenko
,
G. V.
Ivanenkov
,
A. V.
Agafonov
,
S. Y.
Savinov
,
S. A.
Pikuz
,
I. N.
Tilikin
,
S. I.
Tkachenko
,
S. A.
Chaikovskii
,
N. A.
Ratakhin
et al, “
X-pinch source of subnanosecond soft X-ray pulses based on small-sized low-inductance current generator
,”
J. Exp. Theor. Phys.
111
,
363
370
(
2010
).
13.
E. A.
Bolkhovitinov
,
I. N.
Tilikin
,
T. A.
Shelkovenko
,
A. A.
Kologrivov
,
V. M.
Romanova
,
A. A.
Rupasov
, and
S. A.
Pikuz
, “
Study of VUV radiation of hybrid and standard X-pinches on KING electric discharge facility
,”
Plasma Sources Sci. Technol.
29
,
025009
(
2020
).
14.
R. V.
Shapovalov
,
R. B.
Spielman
, and
G. R.
Imel
, “
An oil-free compact x-pinch plasma radiation source: Design and radiation performance
,” in
2017 IEEE 21st International Conference on Pulsed Power (PPC)
(
IEEE
,
2017
).
15.
J.
Strucka
,
J. W. D.
Halliday
,
T.
Gheorghiu
,
H.
Horton
,
B.
Krawczyk
,
P.
Moloney
,
S.
Parker
,
G.
Rowland
,
N.
Schwartz
,
S.
Stanislaus
et al, “
A portable X-pinch design for x-ray diagnostics of warm dense matter
,”
Matter Radiat. Extremes
7
(
1
),
016901
(
2022
).
16.
Z.
Jiang
,
J.
Wu
,
Z.
Chen
,
W.
Wang
,
Z.
Wang
,
Y.
Lu
,
H.
Shi
,
X.
Li
, and
A.
Qiu
, “
Improvement of Faraday rotation and its application in preconditioned single-wire Z-pinch plasma
,”
IEEE Trans. Plasma Sci.
51
(
4
),
944
952
(
2023
).
17.
W. A.
Stygar
,
K. R.
LeChien
,
M. G.
Mazarakis
,
M. E.
Savage
,
B. S.
Stoltzfus
,
K. N.
Austin
,
E. W.
Breden
,
M. E.
Cuneo
,
B. T.
Hutsel
,
S. A.
Lewis
et al, “
Impedance-matched Marx generators
,”
Phys. Rev. Accel. Beams
20
,
040402
(
2017
).
18.
R. D.
McBride
,
W. A.
Stygar
,
M. E.
Cuneo
,
D. B.
Sinars
,
M. G.
Mazarakis
,
J. J.
Leckbee
,
M. E.
Savage
,
B. T.
Hutsel
,
J. D.
Douglass
,
M. L.
Kiefer
et al, “
A primer on pulsed power and linear transformer drivers for high energy density physics applications
,”
IEEE Trans. Plasma Sci.
46
(
11
),
3928
3967
(
2018
).
19.
X.
Jiang
,
H.
Jiang
,
Z.
Wang
,
F.
Sun
, and
A.
Qiu
, “
A compact low-trigger-threshold multigap gas switch
,”
Rev. Sci. Instrum.
90
(
10
),
106101
(
2019
).
20.
W. A.
Stygar
,
H. C.
Ives
,
T. C.
Wagoner
,
J. A.
Lott
,
V.
Anaya
,
H. C.
Harjes
,
J. P.
Corley
,
R. W.
Shoup
,
D. L.
Fehl
,
G. R.
Mowrer
et al, “
Flashover of a vacuum-insulator interface: A statistical model
,”
Phys. Rev. Spec. Top. Accel. Beams
7
(
7
),
070401
(
2004
).
21.
H.
Jiang
,
X.
Jiang
,
Z.
Wang
,
F.
Sun
,
H.
Wei
,
C.
Lou
, and
A.
Qiu
, “
Study on discharge characteristics of six-gap gas switch with corona assisted triggering
,”
Rev. Sci. Instrum.
94
(
5
),
054704
(
2023
).
22.
R. B.
Spielman
and
D. B.
Reisman
, “
On the design of magnetically insulated transmission lines for z-pinch loads
,”
Matter Radiat. Extremes
4
,
027402
(
2019
).
23.
P. F.
Ottinger
and
J. W.
Schumer
, “
Rescaling of equilibrium magnetically insulated flow theory based on results from particle-in-cell simulations
,”
Phys. Plasmas
13
,
063109
(
2006
).
24.
D. D.
Hinshelwood
,
P. F.
Ottinger
,
J. W.
Schumer
,
R. J.
Allen
,
J. P.
Apruzese
,
R. J.
Commisso
,
G.
Cooperstein
,
S. L.
Jackson
,
D. P.
Murphy
,
D. G.
Phipps
et al, “
Ion diode performance on a positive polarity inductive voltage adder with layered magnetically insulated transmission line flow
,”
Phys. Plasmas
18
,
053106
(
2011
).
25.
P.
Zhang
,
H.
Shi
,
Y.
Wang
,
C.
Zhang
,
M.
Xu
,
D.
Wang
,
X.
Li
,
J.
Wu
, and
A.
Qiu
, “
X-ray spectrum estimation of a low-impedance rod pinch diode via transmission-absorption measurement and Monte-Carlo simulation
,”
J. Appl. Phys.
133
(
24
),
243301
(
2023
).
26.
G.
Song
,
J.
Ma
,
C.
Han
,
H.
Zhu
,
K.
Wang
,
Z.
Zhang
, and
D.
Hei
, “
X-ray spot measurement for rod-pinch diode radiographic source by rolled-edge
,”
Nucl. Electron. Detect. Technol.
30
(
6
),
763
767
(
2010
).
You do not currently have access to this content.