Successful operation of ITER requires control of magnetic instabilities including neoclassical tearing modes (NTMs) that can degrade confinement and lead to disruption. Low latency detection by electron cyclotron emission (ECE) diagnostics has been demonstrated in a few current experiments. Using a synthetic diagnostic, we demonstrate low latency NTM detection for ITER with plasmas described by ITER IMAS database scenarios and with realistic limitations imposed on the instrumentation by these high temperature scenarios. 2/1 NTMs are detected 430 ms after magnetic island seeding and before island locking. The radiometer configuration was optimized using simulation, and the smallest detectable island size was explored. Island sizes of ∼3 cm are detectable at the 2/1 surface. The simulated signals incorporate recent physics models for island growth and rotation, which show early locking and continued island growth after locking and before disruption. This work determines limits for ITER ECE spatial resolution imposed by relativistic broadening of channels, which informs hardware design. Real-time detection is demonstrated in hardware that is required by ITER, including on an NI PXI-7853R FPGA system. Development of a synthetic diagnostic and details of the hardware will be discussed.

1.
ITER Organization
,
ITER Research Plan within the Staged Approach (Level III-Provisional Version)
,
2018
.
2.
J. P.
Ziegel
,
W. L.
Rowan
, and
F. L.
Waelbroeck
, “
Detecting neoclassical tearing modes in high-temperature ITER plasma scenarios with the ITER prototype electron cyclotron emission diagnostic
,” Licensed under a Creative Commons Attribution (CC BY 4.0) license (Submitted for publication 2024); https://creativecommons.org/licenses/by/4.0/.
3.
M.
Bornatici
,
R.
Cano
,
O.
De Barbieri
, and
F.
Engelmann
, “
Electron cyclotron emission and absorption in fusion plasmas
,”
Nucl. Fusion
23
(
9
),
1153
1257
(
1983
).
4.
M.
Bornatici
, “
Theory of electron cyclotron absorption of magnetized plasmas
,”
Plasma Phys.
24
(
6
),
629
638
(
1982
).
5.
R.
Nies
,
A. H.
Reiman
, and
N. J.
Fisch
, “
On the stabilisation of locked tearing modes in ITER and other large tokamaks
,”
Nucl. Fusion
62
,
086044
(
2022
).
6.
R. J.
Buttery
,
S.
Gunter
,
G.
Giruzzi
,
T. C.
Hender
,
D.
Howell
,
G.
Huysmans
,
R. J. L.
Haye
,
M.
Maraschek
,
H.
Reimerdes
,
O.
Sauter
,
C. D.
Warrick
,
H. R.
Wilson
, and
H.
Zohm
, “
Neoclassical tearing modes
,”
Plasma Phys. Controlled Fusion
42
,
B61
(
2000
).
7.
F.
Imbeaux
,
S. D.
Pinches
,
J. B.
Lister
,
Y.
Buravand
,
T.
Casper
,
B.
Duval
,
B.
Guillerminet
,
M.
Hosokawa
,
W.
Houlberg
,
P.
Huynh
,
S. H.
Kim
,
G.
Manduchi
,
M.
Owsiak
,
B.
Palak
,
M.
Plociennik
,
G.
Rouault
,
O.
Sauter
, and
P.
Strand
, “
Design and first applications of the ITER integrated modelling and analysis suite
,”
Nucl. Fusion
55
(
12
),
123006
(
2015
); Shot 130506 run 403 is taken from the ITER IMAS database.
8.
R. J.
La Haye
, “
Neoclassical tearing modes and their control
,”
Phys. Plasmas
13
(
5
),
055501
(
2006
).
9.
R.
Fitzpatrick
, “
A nonideal error-field response model for strongly shaped tokamak plasmas
,”
Phys. Plasmas
17
(
11
),
112502
(
2010
).
10.
R. J.
La Haye
,
C.
Paz-Soldan
, and
Y. Q.
Liu
, “
Effect of thick blanket modules on neoclassical tearing mode locking in ITER
,”
Nucl. Fusion
57
(
1
),
014004
(
2017
).
11.
J. G.
Yang
,
Y. H.
Oh
,
D. I.
Choi
,
J. Y.
Kim
, and
W.
Horton
, “
Neoclassical viscosity effects on resistive magnetohydrodynamic modes in toroidal geometry
,”
Phys. Fluids B
4
(
3
),
659
671
(
1992
).
12.
P. H.
Rutherford
, “
Nonlinear growth of the tearing mode
,”
Phys. Fluids
16
(
11
),
1903
1908
(
1973
).
13.
H. J.
Hartfuss
,
T.
Geist
, and
M.
Hirsch
, “
Heterodyne methods in millimetre wave plasma diagnostics with applications to ECE, interferometry and reflectometry
,”
Plasma Phys. Controlled Fusion
39
(
11
),
1693
1769
(
1997
).
14.
J.
Berrino
,
E.
Lazzaro
,
S.
Cirant
,
G.
D’Antona
,
F.
Gandini
,
E.
Minardi
, and
G.
Granucci
, “
Electron cyclotron emission temperature fluctuations associated with magnetic islands and real-time identification and control system
,”
Nucl. Fusion
45
(
11
),
1350
1361
(
2005
).
15.
N.
Rispoli
,
L.
Figini
,
D.
Micheletti
,
D.
Farina
,
S.
Nowak
, and
C.
Sozzi
, “
Detection of neoclassical tearing modes in demo using the electron cyclotron emission
,”
Fusion Eng. Des.
123
,
628
631
(
2017
).
16.
B. A.
Hennen
,
E.
Westerhof
,
P. W. J. M.
Nuij
,
J. W.
Oosterbeek
,
M. R.
de Baar
,
W. A.
Bongers
,
A.
Bürger
,
D. J.
Thoen
, and
M.
Steinbuch
, “
Real-time control of tearing modes using a line-of-sight electron cyclotron emission diagnostic
,”
Plasma Phys. Controlled Fusion
52
(
10
),
104006
(
2010
).
17.
H.
van den Brand
,
M. R.
de Baar
,
N. J.
Lopes Cardozo
, and
E.
Westerhof
, “
Evaluating neoclassical tearing mode detection with ECE for control on ITER
,”
Nucl. Fusion
53
(
1
),
013005
(
2013
).
18.
S.
Houshmandyar
,
R.
Xie
,
M. E.
Austin
,
W. L.
Rowan
, and
H.
Zhao
, “
Fast modulating electron cyclotron emission (FMECE) diagnostic for tokamaks
,”
Rev. Sci. Instrum.
92
(
3
),
033510
(
2021
).
You do not currently have access to this content.