Ultrasonic fatigue testing is quite a useful tool for exploring the high-cycle and very-high-cycle fatigue properties of materials. Damping monitoring has been proved to be fairly effective in indicating the generated defects or damage in the testing specimen. In this work, two damping monitoring methods are comparatively studied, i.e., our recently proposed quantitative electromechanical impedance method and the traditional vibration-free decay method. Industrial pure copper and 6061 aluminum alloy are used for fatigue testing and damping monitoring. To exclude the differences of temperature effect on the testing system, the same duty ratio of 15.4% is employed in the ultrasonic fatigue testing. The results show that both methods can effectively monitor the system damping during testing and the damping evolution process just before failure. Specifically, the free decay method can obtain more damping data and has advantages in monitoring metals, such as aluminum alloys, whose fracture process is very quick. However, the system damping obtained by free decay is strongly dependent on the testing stresses and signal processing and is thus not suitable for failure prediction of specimens. In comparison, the system damping obtained by using the quantitative electromechanical impedance method is independent of the testing stresses. Thus, a definite relationship between the system damping and specimen’s internal friction can be established. However, tens of seconds are required for accurate damping measurement using the quantitative electromechanical impedance method, leading to a low duty ratio of the ultrasonic fatigue testing. In practical, both the methods are suggested for monitoring of early damage during ultrasonic fatigue testing.

1.
H.
Mayer
, “
Recent developments in ultrasonic fatigue
,”
Fatigue Fract. Eng. Mat. Struct.
39
(
1
),
3
29
(
2016
).
2.
P.
Ilie
,
X.
Lesperance
, and
A.
Ince
, “
Development of an ultrasonic fatigue testing system for gigacycle fatigue
,”
Mater. Des. Process. Commun.
2
(
6
),
1
9
(
2020
).
3.
I.
Marinesgarcia
,
J.
Doucet
, and
C.
Bathias
, “
Development of a new device to perform torsional ultrasonic fatigue testing
,”
Int. J. Fatigue
29
(
9–11
),
2094
2101
(
2007
).
4.
W. P.
Mason
,
Piezoelectric Crystals and their Application to Ultrasonics
(
Van Nostrand
,
1959
).
5.
L. E.
Willertz
, “
Ultrasonic fatigue
,”
Int. Mater. Rev.
25
(
1
),
65
78
(
1980
).
6.
F.
Bjørheim
,
S. C.
Siriwardane
, and
D.
Pavlou
, “
A review of fatigue damage detection and measurement techniques
,”
Int. J. Fatigue
154
,
106556
(
2022
).
7.
P. J.
Withers
and
M.
Preuss
, “
Fatigue and damage in structural materials studied by x-ray tomography
,”
Annu. Rev. Mater. Res.
42
(
1
),
81
103
(
2012
).
8.
F.
Farhad
,
D.
Smyth‐Boyle
,
X.
Zhang
,
I.
Wallis
, and
D.
Panggabean
, “
Laboratory apparatus for in‐situ corrosion fatigue testing and characterisation of fatigue cracks using x‐ray micro‐computed tomography
,”
Fatigue Fract. Eng. Mat. Struct.
41
(
12
),
2629
2637
(
2018
).
9.
K. H.
Khor
,
J.-Y.
Buffiére
,
W.
Ludwig
,
H.
Toda
,
H. S.
Ubhi
,
P. J.
Gregson
, and
I.
Sinclair
, “
In situ high resolution synchrotron x-ray tomography of fatigue crack closure micromechanisms
,”
J. Phys.: Condens. Matter
16
(
33
),
S3511
S3515
(
2004
).
10.
S.
Hwang
,
Y.-K.
An
,
J.-M.
Kim
, and
H.
Sohn
, “
Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography
,”
Opt. Lasers Eng.
119
,
9
17
(
2019
).
11.
J.
Fan
,
X.
Guo
, and
C.
Wu
, “
A new application of the infrared thermography for fatigue evaluation and damage assessment
,”
Int. J. Fatigue
44
,
1
7
(
2012
).
12.
A.
Berkovits
and
D.
Fang
, “
Study of fatigue crack characteristics by acoustic emission
,”
Eng. Fract. Mech.
51
(
3
),
401
416
(
1995
).
13.
M.
Naderloo
,
M.
Moosavi
, and
M.
Ahmadi
, “
Using acoustic emission technique to monitor damage progress around joints in brittle materials
,”
Theor. Appl. Fract. Mech.
104
,
102368
(
2019
).
14.
D.-Y.
Ye
,
D.-J.
Wang
, and
P.
An
, “
Characteristics of the change in the surface microhardness during high cycle fatigue damage
,”
Mater. Chem. Phys.
44
(
2
),
179
181
(
1996
).
15.
K.-Y.
Jhang
, “
Applications of nonlinear ultrasonics to the NDE of material degradation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
(
3
),
540
548
(
2000
).
16.
P. B.
Nagy
, “
Fatigue damage assessment by nonlinear ultrasonic materials characterization
,”
Ultrasonics
36
(
1–5
),
375
381
(
1998
).
17.
M.
Fitzka
,
H.
Mayer
,
R.
Schuller
,
S. E.
Stanzl‐Tschegg
,
T.
Przeorski
, and
P.
Krug
, “
Variable amplitude loading of spray‐formed hypereutectic aluminium silicon alloy DISPAL® S232 in the VHCF regime
,”
Fatigue Fract. Eng. Mat. Struct.
37
(
9
),
945
957
(
2014
).
18.
A.
Kumar
,
C. J.
Torbet
,
J. W.
Jones
, and
T. M.
Pollock
, “
Nonlinear ultrasonics for in situ damage detection during high frequency fatigue
,”
J. Appl. Phys.
106
(
2
),
024904
(
2009
).
19.
R. O.
Curadelli
,
J. D.
Riera
,
D.
Ambrosini
, and
M. G.
Amani
, “
Damage detection by means of structural damping identification
,”
Eng. Struct.
30
(
12
),
3497
3504
(
2008
).
20.
M. S.
Cao
,
G. G.
Sha
,
Y. F.
Gao
, and
W.
Ostachowicz
, “
Structural damage identification using damping: A compendium of uses and features
,”
Smart Mater. Struct.
26
(
4
),
043001
(
2017
).
21.
S.
Gohar
,
Y.
Matsumoto
,
T.
Maki
, and
S.
Sakuma
, “
Investigation into vibration-based structural damage identification and amplitude-dependent damping ratio of reinforced concrete bridge deck slab under different loading states
,”
J. Civil Struct. Health Monit.
13
(
1
),
133
148
(
2023
).
22.
A. S.
Nowick
, “
Internal friction in metals
,”
Prog. Met. Phys.
4
,
1
70
(
1953
).
23.
M. S.
Blanter
,
I. S.
Golovin
,
H.
Neuhauser
, and
H.-R.
Sinning
,
Internal Friction in Metallic Materials
(
Springer
,
2007
).
24.
H.
Huang
,
Y.-Z.
Zhu
, and
W.-S.
Chang
, “
Comparison of bending fatigue of NiTi and CuAlMn shape memory alloy bars
,”
Adv. Mater. Sci. Eng.
1
9
(
2020
).
25.
M.
Colakoglu
and
K. L.
Jerina
, “
Material damping in 6061‐T6511 aluminium to assess fatigue damage
,”
Fatigue Fract. Eng. Mat. Struct.
26
(
1
),
79
84
(
2003
).
26.
S.
Khoshmanesh
,
S. J.
Watson
, and
D.
Zarouchas
, “
The effect of the fatigue damage accumulation process on the damping and stiffness properties of adhesively bonded composite structures
,”
Compos. Struct.
287
,
115328
(
2022
).
27.
Y.
Lage
,
H.
Cachão
,
L.
Reis
,
M.
Fonte
,
M.
De Freitas
, and
A.
Ribeiro
, “
A damage parameter for HCF and VHCF based on hysteretic damping
,”
Int. J. Fatigue
62
,
2
9
(
2014
).
28.
B.
Liu
and
F.
Li
, “
Monitoring and quantification of ultrasonic fatigue damage in copper based on internal friction measurement
,”
Int. J. Fatigue
182
,
108166
(
2024
).
29.
J.
Tang
,
M.
Xie
, and
F.
Li
, “
Detecting fatigue in aluminum alloys based on internal friction measurement using an electromechanical impedance method
,”
J. Appl. Phys.
130
(
23
),
235104
(
2021
).
30.
M.
Xie
and
F.
Li
, “
A modified piezoelectric ultrasonic composite oscillator technique for simultaneous measurement of elastic moduli and internal frictions at varied temperature
,”
Rev. Sci. Instrum.
91
(
1
),
015110
(
2020
).
31.
M.
Xie
and
F.
Li
, “
Nonlinear electromechanical impedance spectroscopy: A powerful tool for studying amplitude dependent internal frictions of solids
,”
Rev. Sci. Instrum.
93
(
2
),
025104
(
2022
).
32.
H.-W.
Joo
,
C.-H.
Lee
,
J.-S.
Rho
, and
H.-K.
Jung
, “
Analysis of temperature rise for piezoelectric transformer using finite-element method
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
(
8
),
1449
1457
(
2006
).
You do not currently have access to this content.