Viscosity is a fundamental physical property of lava that dictates style and rate of effusive transport. Studies of lava viscosity have predominantly focused on measuring re-melted rocks in the laboratory. While these measurements are well-constrained in temperature, shear rate, and oxygen fugacity, they cannot reproduce the complexities of the natural emplacement environment. Field viscosity measurements of active lava are the only way to fully capture lava’s properties, but such measurements are scarce, largely due to a lack of easy-to-use, portable, and accurate measurement devices. Thus, there is a need for developing suitable field instruments to help bolster the understanding of lava. Here, we present a new penetrometer capable of measuring a material’s viscosity under the harsh conditions of natural lava emplacement. This device uses a stainless-steel tube with a semi-spherical tip fixed to a load cell that records axial force when pushed into a material, while simultaneously measuring the penetration depth via a free-moving tube that is pushed backward along the penetration tube. The device is portable (1.5 m long, 5.5 kg in weight) and uses a single-board computer for data acquisition. The penetrometer has an operational range from 2.5 × 102 to 2.1 × 105 Pa s and was calibrated for viscosities ranging from 5.0 × 102 to 1.6 × 105 Pa s. It was deployed to the 2023 Litli-Hrútur eruption in Iceland. These field measurements successfully recorded the in situ viscosities of the lava in the range of 1.2 × 104–3.4 × 104 Pa s, showcasing it as an efficient method of measuring natural lava viscosity.

1.
Alidibirov
,
M.
and
Dingwell
,
D. B.
, “
Magma fragmentation by rapid decompression
,”
Nature
380
,
146
148
(
1996
).
2.
Avard
,
G.
and
Whittington
,
A. G.
, “
Rheology of arc dacite lavas: Experimental determination at low strain rates
,”
Bull. Volcanol.
74
,
1039
1056
(
2012
).
3.
Belousov
,
A.
and
Belousova
,
M.
, “
Dynamics and viscosity of ‘a’a and pahoehoe lava flows of the 2012–2013 eruption of Tolbachik volcano, Kamchatka (Russia)
,”
Bull. Volcanol.
80
,
6
(
2018
).
4.
Boutet
,
M.
,
Dore
,
G.
,
Bilodeau
,
J. P.
, and
Pierre
,
P.
, “
Development of models for the interpretation of the dynamic cone penetrometer data
,”
Int. J. Pavement Eng.
12
,
201
214
(
2011
).
5.
Cashman
,
K. V.
,
Soule
,
S. A.
,
Mackey
,
B. H.
,
Deligne
,
N. I.
,
Deardorff
,
N. D.
, and
Dietterich
,
H. R.
, “
How lava flows: New insights from applications of lidar technologies to lava flow studies
,”
Geosphere
9
,
1664
1680
(
2013
).
6.
Chevrel
,
M. O.
,
Cimarelli
,
C.
,
DeBiasi
,
L.
,
Hanson
,
J. B.
,
Lavallée
,
Y.
,
Arzilli
,
F.
, and
Dingwell
,
D. B.
, “
Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador)
,”
Geochem., Geophys., Geosyst.
16
,
870
, (
2015
).
7.
Chevrel
,
M. O.
,
Harris
,
A. J. L.
,
James
,
M. R.
,
Calabrò
,
L.
,
Gurioli
,
L.
, and
Pinkerton
,
H.
, “
The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii
,”
Earth Planet. Sci. Lett.
493
,
161
171
(
2018a
).
8.
Chevrel
,
M. O.
,
Labroquère
,
J.
,
Harris
,
A. J. L.
, and
Rowland
,
S. K.
, “
PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties
,”
Comput. Geosci.
111
,
167
180
(
2018b
).
9.
Chevrel
,
M. O.
,
Latchimy
,
T.
,
Batier
,
L.
,
Delpoux
,
R.
,
Harris
,
M. A.
, and
Kolzenburg
,
S.
, “
A new portable field rotational viscometer for high-temperature melts
,”
Rev. Sci. Instrum.
94
,
105116
(
2023
).
10.
Chevrel
,
M. O.
,
Pinkerton
,
H.
, and
Harris
,
A. J. L.
, “
Measuring the viscosity of lava in the field: A review
,”
Earth-Sci. Rev.
196
,
102852
(
2019
).
11.
Di Fiore
,
F.
,
Vona
,
A.
,
Kolzenburg
,
S.
,
Mollo
,
S.
, and
Romano
,
C.
, “
An extended rheological map of pāhoehoe—‘A’ā transition
,”
J. Geophys. Res.: Solid Earth
126
,
e2021JB022035
, (
2021
).
12.
Dobson
,
K. J.
et al, “
Quantifying microstructural evolution in moving magma
,”
Front. Earth Sci.
8
,
287
(
2020
).
13.
Dubbelboer
,
A.
,
Janssen
,
J. J. M.
,
Zondervan
,
E.
, and
Meuldijk
,
J.
, “
Steady state analysis of structured liquids in a penetrometer
,”
J. Food Eng.
218
,
50
60
(
2018
).
14.
Einarsson
,
T.
,
Rate of Production of Material During the Eruption: The Flowing Lava: Studies of its Main Physical and Chemical Properties
(
Societas Scientarium Islandica
,
1949
), Vol.
4
.
15.
Einarsson
,
T.
, “
Studies of temperature, viscosity, density and some types of materials produced in the surtsey eruption
,”
Surtsey Res. Program Rep.
1
,
163
179
(
1966
).
16.
Floyer
,
J. A.
and
J.
Bruce Jamieson
, “
Rate-effect experiments on round-tipped penetrometer insertion into uniform snow
,”
J. Glaciol.
56
,
664
672
(
2010
).
17.
Fulcher
,
G. S.
, “
Analysis of recent measurements of the viscosity of glasses
,”
J. Am. Ceram. Soc.
8
,
339
(
1925
).
18.
Gauthier
,
F.
, “
Field and laboratory studies of the rheology of Mount Etna lava
,”
Philos. Trans. R. Soc., A
274
,
83
98
(
1973
).
19.
Giordano
,
D.
and
Dingwell
,
D. B.
, “
Viscosity of hydrous Etna basalt: Implications for Plinian-style basaltic eruptions
,”
Bull. Volcanol.
65
,
8
14
(
2003
).
20.
Giordano
,
D.
,
Russell
,
J. K.
, and
Dingwell
,
D. B.
, “
Viscosity of magmatic liquids: A model
,”
Earth Planet. Sci. Lett.
271
,
123
134
(
2008
).
21.
Hall
,
R.
,
Stumpf
,
A.
,
Baji
,
A.
,
Ross
,
R.
, and
Barnett
,
D.
, “
Characterising penetrometer tip contact during concrete condition assessment
,”
Sensors
22
,
737
(
2022
).
22.
Harris
,
A. J.
and
Allen
,
J. S.
, “
One-two- and three-phase viscosity treatments for basaltic lava flows
,”
J. Geophys. Res.: Solid Earth
113
,
B09212
, (
2008
).
23.
Harris
,
A. J. L.
and
Rowland
,
S. K.
,
Lava Flows and Rheology
(
Elsevier, Inc.
,
2015
), pp.
321
342
.
24.
Harris
,
C. R.
et al, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
25.
Heap
,
M. J.
,
Xu
,
T.
, and
Chen
,
C.
, “
The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma
,”
Bull. Volcanol.
76
,
856
(
2014
).
26.
Herrick
,
J. E.
and
Jones
,
T. L.
, “
A dynamic cone penetrometer for measuring soil penetration resistance
,”
Soil Sci. Soc. Am. J.
66
,
1320
1324
(
2002
).
27.
Hess
,
K. U.
,
Cordonnier
,
B.
,
Y.
Lavallée
, and
Dingwell
,
D. B.
, “
High-load, high-temperature deformation apparatus for synthetic and natural silicate melts
,”
Rev. Sci. Instrum.
78
,
075102
(
2007
).
28.
Hess
,
K. U.
and
Dingwell
,
D. B.
, “
Viscosities of hydrous leucogranitic melts: A non-Arrhenian model
,”
Am. Mineral.
81
,
1297
1300
(
1996
).
29.
Hobiger
,
M.
,
Sonder
,
I.
,
Büttner
,
R.
, and
Zimanowski
,
B.
, “
Viscosity characteristics of selected volcanic rock melts
,”
J. Volcanol. Geotherm. Res.
200
,
27
34
(
2011
).
30.
K.
Hon
,
C.
Gansecki
, and
J.
Kauahikaua
, “
The transition from ‘A’ā to pāhoehoe crust on flows emplaced during the Pu’u ‘Ō’ō-kūpaianaha eruption
,” in
U.S. Geological Survey Professional Paper
(
U.S. Geological Survey
,
2003
), pp.
89
103
.
31.
Huang
,
Z.
and
Aode
,
H.
, “
A laboratory study of rheological properties of mudflows in Hangzhou Bay, China
,”
Int. J. Sediment Res.
24
,
410
424
(
2009
).
32.
Hunter
,
J. D.
, “
Matplotlib: A 2D graphics environment
,”
Comput. Sci. Eng.
9
,
90
95
(
2007
).
33.
Jantra
,
C.
,
Slaughter
,
D. C.
,
Roach
,
J.
, and
Pathaveerat
,
S.
, “
Development of a handheld precision penetrometer system for fruit firmness measurement
,”
Postharvest Biol. Technol.
144
,
1
8
(
2018
).
34.
J.
Kauahikaua
,
D. R.
Sherrod
,
K. V.
Cashman
,
C.
Heliker
,
K.
Hon
,
T. N.
Mattox
, and
J. A.
Johnson
, “
Hawaiian lava-flow dynamics during the Pu’u ‘Ō’ō-Kū paianaha eruption: A tale of two decades
,” in
U.S. Geological Survey Professional Paper
(
U.S. Geological Survey
,
2003
), pp.
63
87
.
35.
Keszthelyi
,
L. P.
, “
On the thermal budget of pahoehoe lava flows
,” Ph.D. dissertation (
California Institute of Technology
,
1994
), p.
274
.
36.
Kirkham
,
M. B.
, “
Chapter 11—Penetrometers
,” in
Principles of Soil and Plant Water Relations
, 2nd ed. (
Academic Press
,
Boston
,
2014
), pp.
171
183
.
37.
Kolzenburg
,
S.
,
Chevrel
,
M. O.
, and
Dingwell
,
D. B.
, “
Magma/suspension rheology
,”
Rev. Mineral. Geochem.
87
,
639
720
(
2022
).
38.
Kolzenburg
,
S.
,
Giordano
,
D.
,
Di Muro
,
A.
, and
Dingwell
,
D. B.
, “
Equilibrium viscosity and disequilibrium rheology of a high magnesium basalt from Piton de la Fournaise volcano, La Reunion, Indian Ocean, France
,”
Ann. Geophys.
62
,
VO218
(
2019
).
39.
Kolzenburg
,
S.
,
Hess
,
K.-U.
,
Berlo
,
K.
, and
Dingwell
,
D. B.
, “
Disequilibrium rheology and crystallization kinetics of basalts and implications for the Phlegrean volcanic district
,”
Front. Earth Sci.
8
,
187
(
2020
).
40.
Kostynick
,
R.
,
Matinpour
,
H.
,
Pradeep
,
S.
,
Haber
,
S.
,
Sauret
,
A.
,
Meiburg
,
E.
,
Dunne
,
T.
,
Arratia
,
P.
, and
Jerolmack
,
D.
, “
Rheology of debris flow materials is controlled by the distance from jamming
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2209109119
(
2022
).
41.
Llewellin
,
E. W.
,
Mader
,
H. M.
, and
Wilson
,
S. D. R.
, “
The constitutive equation and flow dynamics of bubbly magmas
,”
Geophys. Res. Lett.
29
,
2170
, (
2002
).
42.
C. W.
Macosko
,
Rheology: Principles, Measurements and Applications
(
Wiley-VCH
,
1994
), pp.
1
576
.
43.
Mader
,
H. M.
,
Llewellin
,
E. W.
, and
Mueller
,
S. P.
, “
The rheology of two-phase magmas: A review and analysis
,”
J. Volcanol. Geotherm. Res.
257
,
135
158
(
2013
).
44.
Marsh
,
B. D.
, “
On the crystallinity, probability of occurrence, and rheology of lava and magma
,”
Contrib. Mineral. Petrol.
78
,
85
98
(
1981
).
45.
Moitra
,
P.
and
Gonnermann
,
H. M.
, “
Effects of crystal shape- and size-modality on magma rheology
,”
Geochem., Geophys., Geosyst.
16
,
1
26
, (
2015
).
46.
Moraes
,
M. T. d.
,
Silva
,
V. R. d.
,
Zwirtes
,
A. L.
, and
Carlesso
,
R.
, “
Use of penetrometers in agriculture: A review
,”
Eng. Agric.
34
,
179
193
(
2014
).
47.
Panov
,
V. K.
,
Slezin
,
Y. B.
, and
Storcheus
,
A. V.
, “
Mechanical properties of lava extruded in 1983 predskazannyi eruption (Klyuchevskoi volcano)
,”
J. Volcanol. Seismol.
7
,
25
37
(
1988
).
48.
H.
Pinkerton
, “
Methods of measuring the rheological properties of lava
,”
Ph.D. dissertation
(
University of Lancaster
,
1978
).
49.
Pinkerton
,
H.
,
Herd
,
R. A.
,
Kent
,
R. M.
, and
Wilson
,
L.
, “
Field measurements of the rheological properties of basaltic lavas
,” in
Abstracts of the Lunar and Planetary Science Conference
(
Lunar and Planetary institute
,
1995a
) Vol. 26, pp.
1127
1128
.
50.
Pinkerton
,
H.
and
Norton
,
G.
, “
Rheological properties of basaltic lavas at sub-liquidus temperatures: Laboratory and field measurements on lavas from Mount Etna
,”
J. Volcanol. Geotherm. Res.
68
,
307
323
(
1995
).
51.
Pinkerton
,
H.
,
Norton
,
G. E.
,
Dawson
,
J. B.
, and
Pyle
,
D. M.
, “
Field observations and measurements of the physical properties of oldoinyo lengai alkali carbonatite lavas
,” in
Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites
, edited by
Bell
,
K.
and
Keller
,
J.
(
Springer
,
Berlin, Heidelberg
,
1995b
), pp.
23
36
.
52.
Pinkerton
,
H.
and
Sparks
,
R. S. J.
, “
Field measurements of the rheology of lava
,”
Nature
276
,
383
385
(
1978
).
53.
Pinkerton
,
H.
and
Stevenson
,
R. J.
, “
Methods of determining the rheological properties of magmas at sub-liquidus temperatures
,”
J. Volcanol. Geotherm. Res.
53
,
47
66
(
1992
).
54.
Pistone
,
M.
,
Caricchi
,
L.
,
Ulmer
,
P.
,
Reusser
,
E.
, and
Ardia
,
P.
, “
Rheology of volatile-bearing crystal mushes: Mobilization vs. viscous death
,”
Chem. Geol.
345
,
16
39
(
2013
).
55.
Robert
,
B.
,
Harris
,
A.
,
Gurioli
,
L.
,
Médard
,
E.
,
Sehlke
,
A.
, and
Whittington
,
A.
, “
Textural and rheological evolution of basalt flowing down a lava channel
,”
Bull. Volcanol.
76
,
824
(
2014
).
56.
Rognon
,
P. G.
,
Chevoir
,
F.
,
Bellot
,
H.
,
Ousset
,
F.
,
Naaïm
,
M.
, and
Coussot
,
P.
, “
Rheology of dense snow flows: Inferences from steady state chute-flow experiments
,”
J. Rheol.
52
,
729
748
(
2008
).
57.
Rust
,
A. C.
and
Manga
,
M.
, “
Effects of bubble deformation on the viscosity of dilute suspensions
,”
J. Non-Newtonian Fluid Mech.
104
,
53
63
(
2002
).
58.
Sato
,
H.
, “
Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano
,”
J. Mineral. Petrol. Sci.
100
,
133
142
(
2005
).
59.
Schneebeli
,
M.
and
Johnson
,
J. B.
, “
A constant-speed penetrometer for high-resolution snow stratigraphy
,”
Ann. Glaciol.
26
,
107
111
(
1998
).
60.
Sehlke
,
A.
,
Whittington
,
A.
,
Robert
,
B.
,
Harris
,
A.
,
Gurioli
,
L.
, and
Médard
,
E.
, “
Pahoehoe to ‘a’a transition of Hawaiian lavas: An experimental study
,”
Bull. Volcanol.
76
,
876
(
2014
).
61.
Shaw
,
H. R.
, “
Rheology of basalt in the melting range
,”
J. Petrol.
10
,
510
535
(
1969
).
62.
Shaw
,
H. R.
,
Wright
,
T. L.
,
Peck
,
D. L.
, and
Okamura
,
R.
, “
The viscosity of basaltic magma: An analysis of field measurements in Makaopuhi lava lake, Hawaii
,”
Am. J. Sci.
266
,
225
264
(
1968
).
63.
Tanaka
,
M.
,
De Man
,
J. M.
, and
Voisey
,
P. W.
, “
Measurement of textural properties of foods with a constant speed cone penetrometer
,”
J. Texture Stud.
2
,
306
315
(
1971
).
64.
Tanaka
,
M.
,
Pearson
,
A. M.
, and
deMan
,
J. M.
, “
Measurement of ice cream texture with the constant speed penetrometer
,”
Can. Inst. Food Sci. Technol. J.
5
,
105
110
(
1972
).
65.
Truby
,
J. M.
,
Mueller
,
S. P.
,
Llewellin
,
E. W.
, and
Mader
,
H. M.
, “
The rheology of three-phase suspensions at low bubble capillary number
,”
Proc. R. Soc. A
471
,
20140557
(
2015
).
66.
Vogel
,
D. H.
, “
Temperaturabhängigkeitsgesetz der viskosität von flüssigkeiten
,”
Phys. Z.
22
,
645
(
1921
).
67.
B.
Widjaja
, “
Landslide and mudflow behavior case study in Indonesia: Rheology approach
,”
IPTEK J. Proc. Ser.
(
3
),
93
(
2019
).

Supplementary Material

You do not currently have access to this content.