In light of the limitations of the current piezoelectric energy harvesters and the demand for self-power supply in wireless sensor nodes, a novel positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling is proposed. The operational characteristics of this energy harvester are investigated from three perspectives: theory, simulation, and experiment. First, a nonlinear electromechanical coupling mathematical model that describes the dynamic response of the energy harvester system is established by combining the Hamilton variational principle with the piezoelectric theory. This provides a theoretical foundation for subsequent research. Second, finite element method simulations are employed to optimize the structural parameters of the energy harvester and study the impact of nonlinear magnetic force on its output performance. Finally, an experimental prototype is fabricated and an experimental test system is constructed to validate the designed positive feedback piezoelectric energy harvester. The results demonstrate that changes in the longitudinal beam angle have minimal effect on energy capture efficiency. By appropriately increasing the bending surface length, reducing initial magnetic moment, and augmenting mass block weight, wider working frequency bands and higher power generation capacity can be achieved when vibrating in low-energy orbits. The experimental findings align closely with theoretical design values and contribute to advancing broadband multi-directional piezoelectric energy harvesting technology in order to provide high-performance vibration-based power solutions for wireless applications.

1.
H. S.
Kim
,
J. H.
Kim
, and
J.
Kim
, “
A review of piezoelectric energy harvesting based on vibration
,”
Int. J. Precis. Eng. Manuf.
12
,
1129
1141
(
2011
).
2.
B.
Jiang
,
F.
Zhu
,
Y.
Yang
et al, “
A hybrid piezoelectric and electromagnetic broadband harvester with double cantilever beams
,”
Micromachines
14
(
2
),
240
(
2023
).
3.
M.
Tekkalmaz
and
I.
Korpeoglu
, “
Distributed power-source-aware routing in wireless sensor networks
,”
Wireless Networks
22
,
1381
1399
(
2016
).
4.
J.
Jiang
,
S.
Liu
,
L.
Feng
, and
D.
Zhao
, “
A review of piezoelectric vibration energy harvesting with magnetic coupling based on different structural characteristics
,”
Micromachines
12
(
4
),
436
(
2021
).
5.
K.
Fan
,
J.
Chang
,
F.
Chao
, and
W.
Pedrycz
, “
Design and development of a multipurpose piezoelectric energy harvester
,”
Energy Convers. Manage.
96
,
430
439
(
2015
).
6.
T.
Ma
,
N.
Chen
,
X.
Wu
et al, “
Z-type piezoelectric vibration energy harvesting device
,”
Opt. Precis. Eng.
27
(
9
),
1968
1980
(
2019
).
7.
M.
Grossi
, “
Energy harvesting strategies for wireless sensor networks and mobile devices: A review
,”
Electronics
10
(
6
),
661
(
2021
).
8.
R.
Song
,
X.
Shan
,
X.
Yang
et al, “
A review of fluid energy capture technology based on piezoelectric energy harvesters
,”
J. Vib. Shock
38
(
17
),
244
250+275
(
2019
).
9.
N.
Li
,
F.
Yang
,
T.
Luo
, and
L.
Qin
, “
Design and experimental investigation of an ultra-low frequency, low-intensity, and multidirectional piezoelectric energy harvester with liquid as the energy-capture medium
,”
Micromachines
14
(
2
),
369
(
2023
).
10.
G.
Yang
,
M.
Jiliang
, and
H.
Jian
et al, “
Wireless self-powered condition monitoring system for coal machine equipment
,”
J. Mech. Eng.
56
(
13
),
41
49
(
2020
).
11.
M.
Iqbal
,
M. M.
Nauman
,
F. U.
Khan
et al, “
Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: A contributed review
,”
Int. J. Energy Res.
45
(
1
),
65
102
(
2021
).
12.
G.
Hu
,
K. T.
Tse
,
K. C. S.
Kwok
et al, “
Aerodynamic modification to a circular cylinder to enhance the piezoelectric wind energy harvesting
,”
Appl. Phys. Lett.
109
,
193902
(
19
) (
2016
).
13.
N.
Sezer
and
M.
Koç
, “
A comprehensive review on the state-of-the-art of piezoelectric energy harvesting
,”
Nano Energy
80
,
105567
(
2021
).
14.
J.
Wang
,
X.
Hu
,
B.
Wang
, and
J. f.
Guo
, “
A novel two-degree-of-freedom spherical ultrasonic motor using three travelling-wave type annular stators
,”
J. Cent. South Univ.
22
(
4
),
1298
1306
(
2015
).
15.
J.
Yu
and
K.
Tao
, “
Applications of vibration energy harvesting technology in the field of wearable devices
,”
J. Mech. Eng.
58
(
20
),
46
71
(
2022
).
16.
J.
Kan
,
X.
Zhang
,
S.
Wang
et al, “
Performance analysis and test of blowing-type PZT wind energy harvester
,”
Opt. Precis. Eng.
24
(
5
),
1087
1092
(
2016
).
17.
H.
Shi
,
S.
Wei
,
H.
Ding
et al, “
Performance analysis of piezoelectric energy harvesting of a Z-shaped beam
,”
J. Vib. Shock
41
(
04
),
93
100
(
2022
).
18.
X.
Yan
and
G.
Zhou
, “
Study on power generation performance of piezoelectric energy harvester under intermediate beam fixed mode
,”
Acta Electron. Sin.
50
(
02
),
404
414
(
2022
).
19.
L.
Cuixian
and
M.
Qin
, “
A 3 × n element piezoelectric vibration generator with low frequency and wide bandwidth exploiting modes separation technique
,”
Acta Electron. Sin.
48
(
03
),
554
560
(
2020
).
20.
X.
Chen
,
X.
Zhang
,
M.
Zuo
et al, “
Modeling and characteristic analysis of arch-thready nonlinear magnetic coupled piezoelectric energy harvester
,”
J. Vib. Shock
40
(
09
),
110
119
(
2021
).
21.
M.
Wang
,
C.
Hou
,
J.
Meng
et al, “
Experimental test for power generation performance of I-L composite piezoelectric beam energy harvester with magnetic nonlinear coupling
,”
J. Vib. Shock
41
(
03
),
123
128
(
2022
).
22.
D.
Huang
,
S.
Zhou
, and
G.
Litak
, “
Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms
,”
Commun. Nonlinear Sci. Numer. Simul.
69
,
270
286
(
2019
).
23.
J.
Wang
,
L.
Geng
, and
K.
Yang
et al, “
Dynamics of the double-beam piezo-magneto-elastic nonlinear wind energy harvester exhibiting galloping-based vibration
,”
Nonlinear Dyn.
100
(
3
),
1963
1983
(
2020
).
24.
F.
Cottone
,
H.
Vocca
, and
L.
Gammaitoni
, “
Nonlinear energy harvesting
,”
Phys. Rev. Lett.
102
(
8
),
080601
(
2009
).
25.
A.
Erturk
and
D. J.
Inman
, “
Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling
,”
J. Sound Vib.
330
(
10
),
2339
2353
(
2011
).
26.
Y.
Zheng
,
Q.
Zhu
,
Z.
Zhao
et al, “
Vibration energy harvesting mechanism and dynamic characteristics of a compound tri-stable piezoelectric vibratory energy harvester combining a linear amplifying mechanism and nonlinear magnetic force
,”
J. Mech. Eng.
58
(
23
),
138
150
(
2022
).
27.
J.
Kan
,
K.
Wang
,
F.
Meng
et al, “
Piezoelectric vibration harvester with excitation direction conversion
,”
Opt. Precis. Eng.
31
(
3
),
371
379
(
2023
).
28.
J.
Kan
,
Y.
Wu
,
Z.
Zhang
et al, “
Research on torsional multi-directional piezoelectric vibration energy harvesters
,”
China Mech. Eng.
34
(
04
),
440
445
(
2023
).
29.
Q.
Youchao
,
Z.
Junqing
, and
Z.
Chi
, “
Review and prospect of micro-nano vibration energy harvesters
,”
J. Mech. Eng.
56
(
13
),
1
15
(
2020
).
30.
X.
Nie
,
T.
Zhang
, and
Y.
Jin
, “
Dynamical behaviors and experimental analysis of tristable piezoelectric energy harvester under narrow-band random excitations
,”
J. Dyn. Control
21
(
03
),
53
62
(
2023
).
31.
G.
Xia
,
F.
Fang
,
Q.
Wang
et al, “
Performance analysis of piezoelectric energy harvesters with a tip mass and nonlinearities of geometry and damping under parametric and external excitations
,”
Arch. Appl. Mech.
90
(
10
),
2297
2318
(
2020
).
32.
S.
Roundy
, “
On the effectiveness of vibration-based energy harvesting
,”
J. Intell. Mater. Syst. Struct.
16
(
10
),
809
823
(
2005
).
33.
N. E.
DuToit
and
B. L.
Wardle
, “
Experimental verification of models for microfabricated piezoelectric vibration energy harvesters
,”
AIAA J.
45
(
5
),
1126
1137
(
2007
).
34.
X.
Li
,
Z.
Li
,
H.
Huang
et al, “
Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier
,”
Results Phys.
18
,
103173
(
2020
).
35.
L.
Haitao
,
Q.
Weiyang
, and
L.
Chunbo
et al, “
Dynamics and coherence resonance of tri-stable energy harvesting system
,”
Smart Mater. Struct.
25
(
1
),
015001
(
2015
).
36.
X.
Zhao
,
M.
Yuan
,
S.
Fang
et al, “
Piezoelectric vibration energy harvesters and dynamic analysisbased on the spinning beam
,”
Chin. J. Theor. Appl. Mech.
55
(
10
),
2228
2238
(
2023
).
37.
Q. M.
Wang
and
L. E.
Cross
, “
Constitutive equations of symmetrical triple layer piezoelectric benders
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
(
6
),
1343
1351
(
1999
).
38.
J.
Tan
,
G.
Wang
,
Y.
Ju
et al, “
Nonlinear dynamic characteristics and experimental validation of a multi-stable piezoelectric vibration energy harvester
,”
J. Vib. Eng.
34
(
04
),
13
(
2021
).
39.
K. W.
Yung
,
P. B.
Landecker
, and
D. D.
Villani
, “
An analytic solution for the force between two magnetic dipoles
,”
Magn. Electr. Sep. Magn. Electr. Sep.
9
,
39
52
(
1998
).
40.
Z.
Lin
and
Y.
Zhang
, “
Effects of physical and geometrical parameters on electromechanical coupling characteristics of a cantilevered piezoelectric vibrator
,”
J. Vib. Shock
34
(
17
),
147
151+179
(
2015
).
41.
G.
Xia
and
J.
Wang
, “
Nonlinear dynamic analysis for a cantilever beam with a tip mass piezoelectric harvester under parametric and direct excitations with multi-scale method
,”
J. Vib. Shock
39
(
19
),
69
77
(
2020
).
42.
Z.
Chen
and
Y.
Yang
, “
Stochastic resonance mechanism for wideband and low frequency vibration energy harvesting based on piezoelectric cantilever beams
,”
Acta Phys. Sin.
60
(
07
),
437
443
(
2011
).
43.
W.
Zhang
,
S.
Liu
,
J.
Mao
et al, “
Design and energy capture characteristics of magnetically coupled bistable wide band piezoelectric energy harvester
,”
Chin. J. Theor. Appl. Mech.
54
(
04
),
1102
1112
(
2022
).
44.
C.
Sheng
,
X.
Xiang
,
H.
Shen
, and
R.
Song
, “
A novel rope-driven piezoelectric energy harvester for multidirectional vibrations
,”
Energy Rep.
9
,
3553
3562
(
2023
).
You do not currently have access to this content.