Experimental insight into the elementary processes underlying charge transfer across interfaces has blossomed with the wide-spread availability of ultra-high vacuum (UHV) setups that allow the preparation and characterization of solid surfaces with well-defined molecular adsorbates over a wide range of temperatures. Within the last 15 years, such insights have extended to charge transfer heterostructures containing solids overlain by one or more atomically thin two dimensional materials. Such systems are of wide potential interest both because they appear to offer a path to separate surface reactivity from bulk chemical properties and because some offer completely novel physics, unrealizable in bulk three dimensional solids. Thick layers of molecular adsorbates or heterostructures of 2D materials generally preclude the use of electrons or atoms as probes. However, with linear photon-in/photon-out techniques, it is often challenging to assign the observed optical response to a particular portion of the interface. We and prior workers have demonstrated that by full characterization of the symmetry of the second order nonlinear optical susceptibility, i.e., the χ(2), in sum frequency generation (SFG) spectroscopy, this problem can be overcome. Here, we describe an UHV system built to allow conventional UHV sample preparation and characterization, femtosecond and polarization resolved SFG spectroscopy, the azimuthal sample rotation necessary to fully describe χ(2) symmetry, and sufficient stability to allow scanning SFG microscopy. We demonstrate these capabilities in proof-of-principle measurements on CO adsorbed on Pt(111) and on the clean Ag(111) surface. Because this setup allows both full characterization of the nonlinear susceptibility and the temperature control and sample preparation/characterization of conventional UHV setups, we expect it to be of great utility in the investigation of both the basic physics and applications of solid, 2D material heterostructures.

1.
S. R.
Bare
and
G. A.
Somorjai
, “
Surface chemistry
,” in
Encyclopedia of Physical Science and Technology
, 3rd ed. (
Academic Press
,
2003
), pp.
373
421
.
2.
J. L.
Bañuelos
,
E.
Borguet
,
G. E.
Brown
,
R. T.
Cygan
,
J. J.
DeYoreo
,
P. M.
Dove
,
M.-P.
Gaigeot
,
F. M.
Geiger
,
J. M.
Gibbs
,
V. H.
Grassian
,
A. G.
Ilgen
,
Y.-S.
Jun
,
N.
Kabengi
,
L.
Katz
,
J. D.
Kubicki
,
J.
Lützenkirchen
,
C. V.
Putnis
,
R. C.
Remsing
,
K. M.
Rosso
,
G.
Rother
,
M.
Sulpizi
,
M.
Villalobos
, and
H.
Zhang
, “
Oxide- and silicate-water interfaces and their roles in technology and the environment
,”
Chem. Rev.
123
,
6413
6544
(
2023
).
3.
M. V.
Hove
,
W.
Weinberg
, and
C.-M.
Chan
,
Low-Energy Electron Diffraction: Experiment, Theory, and Surface Structure Determination
(
Springer
,
1986
).
4.
C. C.
Chang
, “
Auger electron spectroscopy
,”
Surf. Sci.
25
,
53
79
(
1971
).
5.
F.
Hofer
,
F. P.
Schmidt
,
W.
Grogger
, and
G.
Kothleitner
, “
Fundamentals of electron energy-loss spectroscopy
,”
IOP Conf. Ser.: Mater. Sci. Eng.
109
,
012007
(
2016
).
6.
D. A.
King
, “
Thermal desorption from metal surfaces: A review
,”
Surf. Sci.
47
,
384
402
(
1975
).
7.
B.
Holst
,
G.
Alexandrowicz
,
N.
Avidor
,
G.
Benedek
,
G.
Bracco
,
W. E.
Ernst
,
D.
Farías
,
A. P.
Jardine
,
K.
Lefmann
,
J. R.
Manson
,
R.
Marquardt
,
S. M.
Artés
,
S. J.
Sibener
,
J. W.
Wells
,
A.
Tamtögl
, and
W.
Allison
, “
Material properties particularly suited to be measured with helium scattering: Selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials
,”
Phys. Chem. Chem. Phys.
23
,
7653
7672
(
2021
).
8.
C.
Yang
and
C.
Wöll
, “
IR spectroscopy applied to metal oxide surfaces: Adsorbate vibrations and beyond
,”
Adv. Phys.: X
2
,
373
408
(
2017
).
9.
J. D.
Kestell
,
K.
Mudiyanselage
,
X.
Ye
,
C.-Y.
Nam
,
D.
Stacchiola
,
J.
Sadowski
, and
J. A.
Boscoboinik
, “
Stand-alone polarization-modulation infrared reflection absorption spectroscopy instrument optimized for the study of catalytic processes at elevated pressures
,”
Rev. Sci. Instrum.
88
,
105109
(
2017
).
10.
L. A.
Bottomley
,
J. E.
Coury
, and
P. N.
First
, “
Scanning probe microscopy
,”
Anal. Chem.
68
,
185R
230R
(
1996
).
11.
E. H. G.
Backus
,
A.
Eichler
,
A. W.
Kleyn
, and
M.
Bonn
, “
Real-time observation of molecular motion on a surface
,”
Science
310
,
1790
1793
(
2005
).
12.
S.
Vogelgesang
,
G.
Storeck
,
J. G.
Horstmann
,
T.
Diekmann
,
M.
Sivis
,
S.
Schramm
,
K.
Rossnagel
,
S.
Schäfer
, and
C.
Ropers
, “
Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction
,”
Nat. Phys.
14
,
184
190
(
2018
).
13.
G.
Storeck
,
K.
Rossnagel
, and
C.
Ropers
, “
Ultrafast spot-profile LEED of a charge-density wave phase transition
,”
Appl. Phys. Lett.
118
,
221603
(
2021
).
14.
R.
Schlögl
, “
Heterogeneous catalysis
,”
Angew. Chem., Int. Ed.
54
,
3465
3520
(
2015
).
15.
F.
Zaera
, “
Probing liquid/solid interfaces at the molecular level
,”
Chem. Rev.
112
,
2920
2986
(
2012
).
16.
Y. R.
Shen
, “
Surface properties probed by second-harmonic and sum-frequency generation
,”
Nature
337
,
519
525
(
1989
).
17.
Q.
Du
,
R.
Superfine
,
E.
Freysz
, and
Y. R.
Shen
, “
Vibrational spectroscopy of water at the vapor/water interface
,”
Phys. Rev. Lett.
70
,
2313
2316
(
1993
).
18.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
, “
Vibrational spectra of water molecules at quartz/water interfaces
,”
Phys. Rev. Lett.
72
,
238
241
(
1994
).
19.
S.
Yamaguchi
and
T.
Tahara
, “
Development of electronic sum frequency generation spectroscopies and their application to liquid interfaces
,”
J. Phys. Chem. C
119
,
14815
14828
(
2015
).
20.
M.
Roiaz
,
V.
Pramhaas
,
X.
Li
,
C.
Rameshan
, and
G.
Rupprechter
, “
Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts
,”
Rev. Sci. Instrum.
89
,
045104
(
2018
).
21.
X.
Li
,
V.
Pramhaas
,
C.
Rameshan
,
P.
Blaha
, and
G.
Rupprechter
, “
Coverage-induced orientation change: CO on Ir(111) monitored by polarization-dependent sum frequency generation spectroscopy and density functional theory
,”
J. Phys. Chem. C
124
,
18102
18111
(
2020
).
22.
M.
Bonn
,
C.
Hess
,
S.
Funk
,
J. H.
Miners
,
B. N.
Persson
,
M.
Wolf
, and
G.
Ertl
, “
Femtosecond surface vibrational spectroscopy of CO adsorbed on Ru(001) during desorption
,”
Phys. Rev. Lett.
84
,
4653
4656
(
2000
).
23.

For practical considerations–sensitive Si-based detector are widely available for light at visible wavelengths while detectors in for near-infrared wavelengths are generally less sensitive–the great majority of reported second order nonlinear optical spectroscopy employs a sum (and not difference) frequency approach. To aid in concise exposition we therefore refer only to SFG going forward, although similar insights are, in principle, available from DFG.

24.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
, “
Mapping molecular orientation and conformation at interfaces by surface nonlinear optics
,”
Phys. Rev. B
59
,
12632
12640
(
1999
).
25.
X.
Wei
and
Y. R.
Shen
, “
Motional effect in surface sum-frequency vibrational spectroscopy
,”
Phys. Rev. Lett.
86
,
4799
4802
(
2001
).
26.
A. G.
Lambert
,
P. B.
Davies
, and
D. J.
Neivandt
, “
Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review
,”
Appl. Spectrosc. Rev.
40
,
103
145
(
2005
).
27.
H. F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B. H.
Wu
, “
Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)
,”
Int. Rev. Phys. Chem.
24
,
191
256
(
2005
).
28.
W.-T.
Liu
and
Y. R.
Shen
, “
Surface vibrational modes of α-quartz(0001) probed by sum-frequency spectroscopy
,”
Phys. Rev. Lett.
101
,
016101
(
2008
).
29.
W.-T.
Liu
and
Y. R.
Shen
, “
Sum-frequency phonon spectroscopy on α-quartz
,”
Phys. Rev. B
78
,
024302
(
2008
).
30.
J. M.
Lantz
and
R. M.
Corn
, “
Electrostatic field measurements and band flattening during electron-transfer processes at single-crystal TiO2 electrodes by electric field-induced optical second harmonic generation
,”
J. Phys. Chem.
98
,
4899
4905
(
1994
).
31.
S.
Ong
,
X.
Zhao
, and
K. B.
Eisenthal
, “
Polarization of water molecules at a charged interface: Second harmonic studies of the silica/water interface
,”
Chem. Phys. Lett.
191
,
327
335
(
1992
).
32.
F. M.
Geiger
, “
Second harmonic generation, sum frequency generation, and χ(3): Dissecting environmental interfaces with a nonlinear optical Swiss army knife
,”
Annu. Rev. Phys. Chem.
60
,
61
83
(
2009
).
33.
Y.-C.
Wen
,
S.
Zha
,
X.
Liu
,
S.
Yang
,
P.
Guo
,
G.
Shi
,
H.
Fang
,
Y. R.
Shen
, and
C.
Tian
, “
Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy
,”
Phys. Rev. Lett.
116
,
016101
(
2016
).
34.
P. E.
Ohno
,
H. f.
Wang
, and
F. M.
Geiger
, “
Second-order spectral lineshapes from charged interfaces
,”
Nat. Commun.
8
,
1032
(
2017
).
35.
M.
Zeng
,
Y.
Xiao
,
J.
Liu
,
K.
Yang
, and
L.
Fu
, “
Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control
,”
Chem. Rev.
118
,
6236
6296
(
2018
).
36.
V.
Shanmugam
,
R. A.
Mensah
,
K.
Babu
,
S.
Gawusu
,
A.
Chanda
,
Y.
Tu
,
R. E.
Neisiany
,
M.
Försth
,
G.
Sas
, and
O.
Das
, “
A review of the synthesis, properties, and applications of 2D materials
,”
Part. Part. Syst. Charact.
39
,
2200031
(
2022
).
37.
P.
Kumbhakar
,
J. S.
Jayan
,
A.
Sreedevi Madhavikutty
,
P. R.
Sreeram
,
A.
Saritha
,
T.
Ito
, and
C. S.
Tiwary
, “
Prospective applications of two-dimensional materials beyond laboratory frontiers: A review
,”
iScience
26
,
106671
(
2023
).
38.
J. F.
Sierra
,
J.
Fabian
,
R. K.
Kawakami
,
S.
Roche
, and
S. O.
Valenzuela
, “
Van der Waals heterostructures for spintronics and opto-spintronics
,”
Nat. Nanotechnol.
16
,
856
868
(
2021
).
39.
F.
He
,
Y.
Zhou
,
Z.
Ye
,
S.-H.
Cho
,
J.
Jeong
,
X.
Meng
, and
Y.
Wang
, “
Moiré patterns in 2D materials: A review
,”
ACS Nano
15
,
5944
5958
(
2021
).
40.
S. K.
Behura
,
A.
Miranda
,
S.
Nayak
,
K.
Johnson
,
P.
Das
, and
N. R.
Pradhan
, “
Moiré physics in twisted van der Waals heterostructures of 2D materials
,”
Emergent Mater.
4
,
813
826
(
2021
).
41.
S.
Park
,
N.
Mutz
,
T.
Schultz
,
S.
Blumstengel
,
A.
Han
,
A.
Aljarb
,
L.-J.
Li
,
E. J. W.
List-Kratochvil
,
P.
Amsalem
, and
N.
Koch
, “
Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates
,”
2D Mater.
5
,
025003
(
2018
).
42.
E.
Pollmann
,
S.
Sleziona
,
T.
Foller
,
U.
Hagemann
,
C.
Gorynski
,
O.
Petri
,
L.
Madauß
,
L.
Breuer
, and
M.
Schleberger
, “
Large-area, two-dimensional MoS2 exfoliated on gold: Direct experimental access to the metal-semiconductor interface
,”
ACS Omega
6
,
15929
15939
(
2021
).
43.
Y.
Wang
,
J.
Xiao
,
S.
Yang
,
Y.
Wang
, and
X.
Zhang
, “
Second harmonic generation spectroscopy on two-dimensional materials [Invited]
,”
Opt. Mater. Express
9
,
1136
1149
(
2019
).
44.
J.
Zhang
,
W.
Zhao
,
P.
Yu
,
G.
Yang
, and
Z.
Liu
, “
Second harmonic generation in 2D layered materials
,”
2D Mater.
7
,
042002
(
2020
).
45.
Y.
Li
,
Y.
Rao
,
K. F.
Mak
,
Y.
You
,
S.
Wang
,
C. R.
Dean
, and
T. F.
Heinz
, “
Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation
,”
Nano Lett.
13
,
3329
3333
(
2013
).
46.
A. R.
Khan
,
B.
Liu
,
T.
,
L.
Zhang
,
A.
Sharma
,
Y.
Zhu
,
W.
Ma
, and
Y.
Lu
, “
Direct measurement of folding angle and strain vector in atomically thin WS2 using second-harmonic generation
,”
ACS Nano
14
,
15806
15815
(
2020
).
47.
Y. V.
Zhumagulov
,
V. D.
Neverov
,
A. E.
Lukyanov
,
D. R.
Gulevich
,
A. V.
Krasavin
,
A.
Vagov
, and
V.
Perebeinos
, “
Nonlinear spectroscopy of excitonic states in transition metal dichalcogenides
,”
Phys. Rev. B
105
,
115436
(
2022
).
48.
T.
Yang
,
E.
Pollmann
,
S.
Sleziona
,
E.
Hasselbrink
,
P.
Kratzer
,
M.
Schleberger
,
R. K.
Campen
, and
Y.
Tong
, “
Interaction between a gold substrate and monolayer MoS2: An azimuthal-dependent sum frequency generation study
,”
Phys. Rev. B
107
,
155433
(
2023
).
49.
T.
Yang
,
S.
Sleziona
,
E.
Pollmann
,
E.
Hasselbrink
,
P.
Kratzer
,
M.
Schleberger
,
R. K.
Campen
, and
Y.
Tong
, “
Isolating the optical response of a MoS2 monolayer under extreme screening of a metal substrate
,”
Phys. Rev. B
109
,
L161402
(
2024
).
50.
P.
Rivera
,
K. L.
Seyler
,
H.
Yu
,
J. R.
Schaibley
,
J.
Yan
,
D. G.
Mandrus
,
W.
Yao
, and
X.
Xu
, “
Valley-polarized exciton dynamics in a 2D semiconductor heterostructure
,”
Science
351
,
688
691
(
2016
).
51.
S.
Ulstrup
,
A. G.
Čabo
,
D.
Biswas
,
J. M.
Riley
,
M.
Dendzik
,
C. E.
Sanders
,
M.
Bianchi
,
C.
Cacho
,
D.
Matselyukh
,
R. T.
Chapman
,
E.
Springate
,
P. D. C.
King
,
J. A.
Miwa
, and
P.
Hofmann
, “
Spin and valley control of free carriers in single-layer WS2
,”
Phys. Rev. B
95
,
041405
(
2017
).
52.
R.
Austin
,
Y. R.
Farah
,
T.
Sayer
,
B. M.
Luther
,
A.
Montoya-Castillo
,
A. T.
Krummel
, and
J. B.
Sambur
, “
Hot carrier extraction from 2D semiconductor photoelectrodes
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2220333120
(
2023
).
53.
G. D.
Boyd
and
D. A.
Kleinman
, “
Parametric interaction of focused Gaussian light beams
,”
J. Appl. Phys.
39
,
3597
3639
(
1968
).
54.
W.
Seka
,
S. D.
Jacobs
,
J. E.
Rizzo
,
R.
Boni
, and
R. S.
Craxton
, “
Demonstration of high efficiency third harmonic conversion of high power Nd-glass laser radiation
,”
Opt. Commun.
34
,
469
473
(
1980
).
55.
R.
Hui
and
M.
O’Sullivan
, “
Basic mechanisms and instrumentation for optical measurement
,” in
Fiber-Optic Measurement Techniques
, 2nd ed. (
Academic Press
,
2023
), pp.
137
295
.
56.
G.
Zwaschka
,
M.
Wolf
,
R. K.
Campen
, and
Y.
Tong
, “
A microscopic model of the electrochemical vibrational Stark effect: Understanding VSF spectroscopy of (bi)sulfate on Pt(111)
,”
Surf. Sci.
678
,
78
85
(
2018
).
57.
H.-J.
Freund
,
G.
Meijer
,
M.
Scheffler
,
R.
Schlögl
, and
M.
Wolf
, “
CO oxidation as a prototypical reaction for heterogeneous processes
,”
Angew. Chem., Int. Ed.
50
,
10064
10094
(
2011
).
58.
H.
Bae
,
C.
Seong
,
V.
Burungale
,
M.
Seol
,
C. O.
Yoon
,
S. H.
Kang
,
W.-G.
Jung
,
B.-J.
Kim
, and
J.-S.
Ha
, “
Nanostructured Au electrode with 100 h stability for solar-driven electrochemical reduction of carbon dioxide to carbon monoxide
,”
ACS Omega
7
,
9422
9429
(
2022
).
59.
G.
Ertl
,
M.
Neumann
, and
K. M.
Streit
, “
Chemisorption of CO on the Pt(111) surface
,”
Surf. Sci.
64
,
393
410
(
1977
).
60.
H.
Steininger
,
S.
Lehwald
, and
H.
Ibach
, “
On the adsorption of CO on Pt(111)
,”
Surf. Sci.
123
,
264
282
(
1982
).
61.

The pumping speed of the HiPace 700 H turbomolecular pump is 685 l/s for N2.

62.
M.
Polanyi
and
E.
Wigner
, “
Bildung und zerfall von molekülen
,”
Z. Phys.
33
,
429
434
(
1925
).
63.
A. M.
de Jong
and
J. W.
Niemantsverdriet
, “
Thermal desorption analysis: Comparative test of ten commonly applied procedures
,”
Surf. Sci.
233
,
355
365
(
1990
).
64.
P. R.
Norton
,
J. A.
Davies
, and
T. E.
Jackman
, “
Absolute coverages of CO and O on Pt(111); comparison of saturation CO coverages on Pt(100), (110) and (111) surfaces
,”
Surf. Sci. Lett.
122
,
L593
L600
(
1982
).
65.
K.
Hermann
and
M. A. v.
Hove
, LEEDpat Download Package,
2022
.
66.
M.
Maglietta
,
F.
Pratesi
, and
G.
Rovida
, “
Quantitative determination of carbon on silver by Auger spectroscopy
,”
Chem. Phys. Lett.
36
,
436
440
(
1975
).
67.
A. M.
Bradshaw
and
J.
Pritchard
, “
Infrared spectra of carbon monoxide chemisorbed on metal films: A comparative study of copper, silver, gold, iron, cobalt and nickel
,”
Proc. R. Soc. London, Ser. A
316
,
169
183
(
1970
).
68.
M.
Trenary
, “
Reflection absorption infrared spectroscopy and the structure of molecular adsorbates on metal surfaces
,”
Annu. Rev. Phys. Chem.
51
,
381
403
(
2000
).
69.
X.
Li
,
M.
Roiaz
,
V.
Pramhaas
,
C.
Rameshan
, and
G.
Rupprechter
, “
Polarization-dependent SFG spectroscopy of near ambient pressure CO adsorption on Pt(111) and Pd(111) revisited
,”
Top. Catal.
61
,
751
762
(
2018
).
70.
C.
Hirose
,
N.
Akamatsu
, and
K.
Domen
, “
Formulas for the analysis of the surface SFG spectrum and transformation coefficients of cartesian SFG tensor components
,”
Appl. Spectrosc.
46
,
1051
1072
(
1992
).
71.
G.
Apai
,
P. S.
Wehner
,
R. S.
Williams
,
J.
Stohr
, and
D. A.
Shirley
, “
Orientation of CO on Pt(111) and Ni(111) surfaces from angle-resolved photoemission
,”
Phys. Rev. Lett.
37
,
1497
1500
(
1976
).
72.
P.
Hofmann
,
S. R.
Bare
,
N. V.
Richardson
, and
D. A.
King
, “
Orientation of chemisorbed species from orthogonal-plane arups: Tilted CO on Pt{110} and upright CO on Pt{111}
,”
Solid State Commun.
42
,
645
651
(
1982
).
73.
D. A.
Wesner
,
F. P.
Coenen
, and
H. P.
Bonzel
, “
Orientation of adsorbed CO on Pt(111) + K by x-ray photoelectron diffraction
,”
Phys. Rev. B
33
,
8837
8840
(
1986
).
74.
D. F.
Ogletree
,
M. A.
Van Hove
, and
G. A.
Somorjai
, “
LEED intensity analysis of the structures of clean Pt(111) and of CO adsorbed on Pt(111) in the c(4 × 2) arrangement
,”
Surf. Sci.
173
,
351
365
(
1986
).
75.
B.
Busson
and
A.
Tadjeddine
, “
Non-uniqueness of parameters extracted from resonant second-order nonlinear optical spectroscopies
,”
J. Phys. Chem. C
113
,
21895
21902
(
2009
).
76.
D. K.
Lambert
, “
Vibrational Stark effect of adsorbates at electrochemical interfaces
,”
Electrochim. Acta
41
,
623
630
(
1996
).
77.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
, “
Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules
,”
J. Chem. Phys.
109
,
10657
10668
(
1998
).
78.
S.
Baldelli
,
N.
Markovic
,
P.
Ross
,
Y.-R.
Shen
, and
G.
Somorjai
, “
Sum frequency generation of CO on (111) and polycrystalline platinum electrode surfaces: Evidence for SFG invisible surface CO
,”
J. Phys. Chem. B
103
,
8920
8925
(
1999
).
79.
A.
Ouvrard
,
J.
Wang
,
A.
Ghalgaoui
,
S.
Nave
,
S.
Carrez
,
W.
Zheng
,
H.
Dubost
, and
B.
Bourguignon
, “
CO adsorption on Pd(100) revisited by sum frequency generation: Evidence for two adsorption sites in the compression stage
,”
J. Phys. Chem. C
118
,
19688
19700
(
2014
).
80.
Y.
Tong
, “
Linear vs. nonlinear electrochemical vibrational Stark effect: Preconditions of the approximation
,” in
Encyclopedia of Solid-Liquid Interfaces
, 1st ed., edited by
K.
Wandelt
and
G.
Bussetti
(
Elsevier
,
Oxford
,
2024
), pp.
750
759
.
81.
C.
Klünker
,
M.
Balden
,
S.
Lehwald
, and
W.
Daum
, “
CO stretching vibrations on Pt(111) and Pt(110) studied by sumfrequency generation
,”
Surf. Sci.
360
,
104
111
(
1996
).
82.
W. G.
Roeterdink
,
M.
Bonn
, and
R. A.
Olsen
, “
The CO–H interaction on Pt(111) studied using temperature programmed vibrational sum frequency generation
,”
Chem. Phys. Lett.
412
,
482
487
(
2005
).
83.
F.
Fournier
,
W.
Zheng
,
S.
Carrez
,
H.
Dubost
, and
B.
Bourguignon
, “
Ultrafast laser excitation of CO/Pt(111) probed by sum frequency generation: Coverage dependent desorption efficiency
,”
Phys. Rev. Lett.
92
,
216102
(
2004
).
84.
E. H. G.
Backus
,
M.
Forsblom
,
M.
Persson
, and
M.
Bonn
, “
Highly efficient ultrafast energy transfer into molecules at surface step sites
,”
J. Phys. Chem. C
111
,
6149
6153
(
2007
).
85.
M.
Nagao
,
K.
Watanabe
, and
Y.
Matsumoto
, “
Ultrafast vibrational energy transfer in the layers of D2O and CO on Pt(111) studied with time-resolved sum-frequency-generation spectroscopy
,”
J. Phys. Chem. C
113
,
11712
11719
(
2009
).
86.
H.
Arnolds
and
M.
Bonn
, “
Ultrafast surface vibrational dynamics
,”
Surf. Sci. Rep.
65
,
45
66
(
2010
).
87.
M.
Wolf
, “
Femtosecond dynamics of electronic excitations at metal surfaces
,”
Surf. Sci.
377–379
,
343
349
(
1997
).
88.
J. D.
Beckerle
,
R. R.
Cavanagh
,
M. P.
Casassa
,
E. J.
Heilweil
, and
J. C.
Stephenson
, “
Subpicosecond transient infrared spectroscopy of adsorbates. Vibrational dynamics of CO/Pt(111)
,”
J. Chem. Phys.
95
,
5403
5418
(
1991
).
89.
S.
Roke
,
A. W.
Kleyn
, and
M.
Bonn
, “
Time- vs. frequency-domain femtosecond surface sum frequency generation
,”
Chem. Phys. Lett.
370
,
227
232
(
2003
).
90.
C. S.
Ponseca
, Jr.
,
P.
Chábera
,
J.
Uhlig
,
P.
Persson
, and
V.
Sundström
, “
Ultrafast electron dynamics in solar energy conversion
,”
Chem. Rev.
117
,
10940
11024
(
2017
).
91.
H.
Frei
, “
Time-resolved vibrational and electronic spectroscopy for understanding how charges drive metal oxide catalysts for water oxidation
,”
J. Phys. Chem. Lett.
13
,
7953
7964
(
2022
).
92.
C.
Wen
,
A.
Yin
, and
W.-L.
Dai
, “
Recent advances in silver-based heterogeneous catalysts for green chemistry processes
,”
Appl. Catal., B
160-161
,
730
741
(
2014
).
93.
C.
Li
and
X.
Bi
,
Silver Catalysis in Organic Synthesis
(
Wiley-VCH Verlag GmbH and Co. KGaA
,
2019
).
94.
I.-K.
Suh
,
H.
Ohta
, and
Y.
Waseda
, “
High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction
,”
J. Mater. Sci.
23
,
757
760
(
1988
).
95.
K. A.
Friedrich
and
G. L.
Richmond
, “
Surface second harmonic generation studies of stepped Ag (111) electrode surfaces
,”
Chem. Phys. Lett.
213
,
491
497
(
1993
).
96.
H. A.
Engelhardt
and
D.
Menzel
, “
Adsorption of oxygen on silver single crystal surfaces
,”
Surf. Sci.
57
,
591
618
(
1976
).
97.
M.
Chelvayohan
and
C. H. B.
Mee
, “
Work function measurements on (110), (100) and (111) surfaces of silver
,”
J. Phys. C: Solid State Phys.
15
,
2305
2312
(
1982
).
98.
R. W.
Boyd
,
Nonlinear Optics
, 4th ed. (
Academic Press
,
2020
).
99.
A. L.
Harris
,
L.
Rothberg
,
L.
Dhar
,
N. J.
Levinos
, and
L. H.
Dubois
, “
Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: Methyl thiolate (CH3S) on Ag(111)
,”
J. Chem. Phys.
94
,
2438
2448
(
1991
).
100.
E. A.
Soares
,
V. B.
Nascimento
,
V. E.
de Carvalho
,
C. M. C.
de Castilho
,
A. V.
de Carvalho
,
R.
Toomes
, and
D. P.
Woodruff
, “
Structure determination of Ag(111) by low-energy electron diffraction
,”
Surf. Sci.
419
,
89
96
(
1999
).
101.
E. A.
Soares
,
G. S.
Leatherman
,
R. D.
Diehl
, and
M. A.
Van Hove
, “
Low-energy electron diffraction study of the thermal expansion of Ag(111)
,”
Surf. Sci.
468
,
129
136
(
2000
).
102.
S. K.
Shaw
,
A.
Lagutchev
,
D. D.
Dlott
, and
A. A.
Gewirth
, “
Sum-frequency spectroscopy of molecular adsorbates on low-index Ag surfaces: Effects of azimuthal rotation
,”
Anal. Chem.
81
,
1154
1161
(
2009
).
103.
X.
Chen
,
C. M.
Lee
,
H.-F.
Wang
,
L.
Jensen
, and
S. H.
Kim
, “
Experimental and theoretical study of azimuth angle and polarization dependences of sum-frequency-generation vibrational spectral features of uniaxially aligned cellulose crystals
,”
J. Phys. Chem. C
121
,
18876
18886
(
2017
).
104.
A.
Hanninen
,
M. W.
Shu
, and
E. O.
Potma
, “
Hyperspectral imaging with laser-scanning sum-frequency generation microscopy
,”
Biomed. Opt. Express
8
,
4230
4242
(
2017
).
105.
D.
Zheng
,
L.
Lu
,
K. F.
Kelly
, and
S.
Baldelli
, “
Chemical imaging of self-assembled monolayers on copper using compressive hyperspectral sum frequency generation microscopy
,”
J. Phys. Chem. B
122
,
464
471
(
2018
).
106.
G.
Zwaschka
,
I.
Nahalka
,
A.
Marchioro
,
Y.
Tong
,
S.
Roke
, and
R. K.
Campen
, “
Imaging the heterogeneity of the oxygen evolution reaction on gold electrodes operando: Activity is highly local
,”
ACS Catal.
10
,
6084
6093
(
2020
).
107.
H.
Li
,
K. F.
Kelly
, and
S.
Baldelli
, “
Spectroscopic imaging of surfaces—Sum frequency generation microscopy (SFGM) combined with compressive sensing (CS) technique
,”
J. Chem. Phys.
153
,
190901
(
2020
).
108.
D. J.
Dick
,
A. J.
Heeger
,
Y.
Yang
, and
Q.
Pei
, “
Imaging the structure of the p-n junction in polymer light-emitting electrochemical cells
,”
Adv. Mater.
8
,
985
987
(
1996
).
109.
G. Y.
Zhuo
,
S.
Banik
,
F. J.
Kao
,
G. A.
Ahmed
,
N. M.
Kakoty
,
N.
Mazumder
, and
A.
Gogoi
, “
An insight into optical beam induced current microscopy: Concepts and applications
,”
Microsc. Res. Tech.
85
,
3495
3513
(
2022
).
110.
Z.
Huang
,
M.
Bridger
,
O. A.
Naranjo-Montoya
,
A.
Tarasevitch
,
U.
Bovensiepen
,
Y.
Tong
, and
R. K.
Campen
, “
A femtosecond time resolved view of vibrationally assisted electron transfer across the metal/aqueous interface
,” (
2023
).
You do not currently have access to this content.