In this paper, we discuss a technique for selectively loading a particle into a magneto-gravitational trap using the sublimation of camphor to release particles from a tungsten probe tip directly into the trapping region. This sublimation-activated release (SAR) loading technique makes use of micropositioners with tungsten probe tips, as well as the relatively fast rate of sublimation of camphor at room temperature, to selectively load particles having diameters ranging from 8 to 100 μm or more. The advantages of this method include its ability to selectively load unique particles or particles in limited supply, its low loss compared to alternative techniques, the low speed of the particle when released, and the versatility of its design, which allows for loading into traps with complex geometries. SAR is demonstrated here by loading a particle into a magneto-gravitational trap, but the technique could also be applicable to other levitated optomechanical systems.

1.
T.
Liang
,
S.
Zhu
,
P.
He
,
Z.
Chen
,
Y.
Wang
,
C.
Li
,
Z.
Fu
,
X.
Gao
,
X.
Chen
,
N.
Li
et al, “
Yoctonewton force detection based on optically levitated oscillator
,”
Fundam. Res.
3
(
1
),
57
62
(
2023
).
2.
B.
Rodenburg
,
L. P.
Neukirch
,
A. N.
Vamivakas
, and
M.
Bhattacharya
, “
Quantum model of cooling and force sensing with an optically trapped nanoparticle
,”
Optica
3
(
3
),
318
323
(
2016
).
3.
G.
Ranjit
,
D. P.
Atherton
,
J. H.
Stutz
,
M.
Cunningham
, and
A. A.
Geraci
, “
Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum
,”
Phys. Rev. A
91
(
5
),
051805
(
2015
).
4.
G.
Ranjit
,
M.
Cunningham
,
K.
Casey
, and
A. A.
Geraci
, “
Zeptonewton force sensing with nanospheres in an optical lattice
,”
Phys. Rev. A
93
(
5
),
053801
(
2016
).
5.
F.
Merenda
,
M.
Grossenbacher
,
S.
Jeney
,
L.
Forró
, and
R.-P.
Salathé
, “
Three-dimensional force measurements in optical tweezers formed with high-NA micromirrors
,”
Opt. Lett.
34
(
7
),
1063
1065
(
2009
).
6.
C. W.
Lewandowski
, “
Towards a precision measurement of the Newtonian constant of gravitation and accelerometry with a levitated microsphere in a magneto-gravitational trap
,” Ph.D. thesis,
Montana State University
,
2020
.
7.
G.
Afek
,
D.
Carney
, and
D. C.
Moore
, “
Coherent scattering of low mass dark matter from optically trapped sensors
,”
Phys. Rev. Lett.
128
(
10
),
101301
(
2022
).
8.
A. J.
Brady
,
X.
Chen
,
Y.
Xia
,
J.
Manley
,
M.
Dey Chowdhury
,
K.
Xiao
,
Z.
Liu
,
R.
Harnik
,
D. J.
Wilson
,
Z.
Zhang
, and
Q.
Zhuang
,
Entanglement-enhanced optomechanical sensor array with application to dark matter searches
,”
Commun. Phys.
6
(
1
),
237
(
2023
).
9.
G.
Higgins
,
S.
Kalia
, and
Z.
Liu
, “
Maglev for dark matter: Dark-photon and axion dark matter sensing with levitated superconductors
,”
Phys. Rev. D
109
(
5
), (
2024
). 055024
10.
D.
Carney
,
K. G.
Leach
, and
D. C.
Moore
, “
Searches for massive neutrinos with mechanical quantum sensors
,”
PRX Quantum
4
(
1
),
010315
(
2023
).
11.
J.
Bateman
,
S.
Nimmrichter
,
K.
Hornberger
, and
H.
Ulbricht
, “
Near-field interferometry of a free-falling nanoparticle from a point-like source
,”
Nat. Commun.
5
(
1
),
4788
(
2014
).
12.
L.
Neumeier
,
M. A.
Ciampini
,
O.
Romero-Isart
,
M.
Aspelmeyer
, and
N.
Kiesel
, “
Fast quantum interference of a nanoparticle via optical potential control
,”
Proc. Natl. Acad. Sci. U.S.A
121
(
4
), (
2024
). e2306953121
13.
J.
Millen
,
S.
Kuhn
,
F.
Patolsky
,
A.
Kosloff
, and
M.
Arndt
, “
Cooling and manipulation of nanoparticles in high vacuum
,”
Proc. SPIE
9922
,
99220C
(
2016
).
14.
Y.
Ai
,
C.
Wang
,
G.
Videen
, and
Y.-L.
Pan
, “
Optically levitated, single-particle reactor for the study of surface and heterogeneous chemistry-reactions of particulate-bound mercury with ozone in air
,”
Chem. Phys. Lett.
817
,
140428
(
2023
).
15.
B. E.
Kane
, “
Levitated spinning graphene flakes in an electric quadrupole ion trap
,”
Phys. Rev. B
82
(
11
),
115441
(
2010
).
16.
T.
Wang
,
S.
Lourette
,
S. R.
O’Kelley
,
M.
Kayci
,
Y. B.
Band
,
D. F. J.
Kimball
,
A. O.
Sushkov
, and
D.
Budker
, “
Dynamics of a ferromagnetic particle levitated over a superconductor
,”
Phys. Rev. Appl.
11
(
4
),
044041
(
2019
).
17.
J.
Gieseler
,
A.
Kabcenell
,
E.
Rosenfeld
,
J. D.
Schaefer
,
A.
Safira
,
M. J. A.
Schuetz
,
C.
Gonzalez-Ballestero
,
C. C.
Rusconi
,
O.
Romero-Isart
, and
M. D.
Lukin
, “
Single-spin magnetomechanics with levitated micromagnets
,”
Phys. Rev. Lett.
124
(
16
),
163604
(
2020
).
18.
O.
Romero-Isart
,
L.
Clemente
,
C.
Navau
,
A.
Sanchez
, and
J. I.
Cirac
, “
Quantum magnetomechanics with levitating superconducting microspheres
,”
Phys. Rev. Lett.
109
(
14
),
147205
(
2012
).
19.
J.
Hofer
,
R.
Gross
,
G.
Higgins
,
H.
Huebl
,
O. F.
Kieler
,
R.
Kleiner
,
D.
Koelle
,
P.
Schmidt
,
J. A.
Slater
,
M.
Trupke
et al, “
High-Q magnetic levitation and control of superconducting microspheres at millikelvin temperatures
,”
Phys. Rev. Lett.
131
(
4
),
043603
(
2023
).
20.
A.
Kuhlicke
,
A. W.
Schell
,
J.
Zoll
, and
O.
Benson
, “
Nitrogen vacancy center fluorescence from a submicron diamond cluster levitated in a linear quadrupole ion trap
,”
Appl. Phys. Lett.
105
(
7
),
073101
(
2014
).
21.
T.
Delord
,
L.
Nicolas
,
L.
Schwab
, and
G.
Hétet
, “
Electron spin resonance from NV centers in diamonds levitating in an ion trap
,”
New J. Phys.
19
(
3
),
033031
(
2017
).
22.
J.-F.
Hsu
,
P.
Ji
,
C. W.
Lewandowski
, and
B.
D’Urso
, “
Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum
,”
Sci. Rep.
6
,
30125
(
2016
).
23.
A.
Ashkin
and
J. M.
Dziedzic
, “
Optical levitation by radiation pressure
,”
Appl. Phys. Lett.
19
(
8
),
283
285
(
1971
).
24.
M. D.
Summers
,
D. R.
Burnham
, and
D.
McGloin
, “
Trapping solid aerosols with optical tweezers: A comparison between gas and liquid phase optical traps
,”
Opt. Express
16
(
11
),
7739
7747
(
2008
).
25.
T.
Li
,
S.
Kheifets
,
D.
Medellin
, and
M. G.
Raizen
, “
Measurement of the instantaneous velocity of a Brownian particle
,”
Science
328
(
5986
),
1673
1675
(
2010
).
26.
J.
Gieseler
,
B.
Deutsch
,
R.
Quidant
, and
L.
Novotny
, “
Subkelvin parametric feedback cooling of a laser-trapped nanoparticle
,”
Phys. Rev. Lett.
109
(
10
),
103603
(
2012
).
27.
P.
Asenbaum
,
S.
Kuhn
,
S.
Nimmrichter
,
U.
Sezer
, and
M.
Arndt
, “
Cavity cooling of free silicon nanoparticles in high vacuum
,”
Nat. Commun.
4
(
1
),
2743
(
2013
).
28.
P.
Mestres
,
J.
Berthelot
,
M.
Spasenović
,
J.
Gieseler
,
L.
Novotny
, and
R.
Quidant
, “
Cooling and manipulation of a levitated nanoparticle with an optical fiber trap
,”
Appl. Phys. Lett.
107
(
15
),
151102
(
2015
).
29.
L.
Rondin
,
J.
Gieseler
,
F.
Ricci
,
R.
Quidant
,
C.
Dellago
, and
L.
Novotny
, “
Direct measurement of Kramers turnover with a levitated nanoparticle
,”
Nat. Nanotechnol.
12
(
12
),
1130
1133
(
2017
).
30.
A.
Khodaee
,
K.
Dare
,
A.
Johnson
,
U.
Delić
, and
M.
Aspelmeyer
, “
Dry launching of silica nanoparticles in vacuum
,”
AIP Adv.
12
(
12
),
125023
(
2022
).
31.
O. A.
Schmidt
,
M. K.
Garbos
,
T. G.
Euser
, and
P. St. J.
Russell
, “
Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber
,”
Opt. Lett.
37
(
1
),
91
93
(
2012
).
32.
H.
Park
and
T. W.
LeBrun
, “
Optical trap loading of dielectric microparticles in air
,”
J. Visualized Exp.
120
,
e54862
(
2017
).
33.
D.
Grass
,
J.
Fesel
,
S. G.
Hofer
,
N.
Kiesel
, and
M.
Aspelmeyer
, “
Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers
,”
Appl. Phys. Lett.
108
(
22
),
221103
(
2016
).
34.
A.
Ashkin
,
J. M.
Dziedzic
, and
T.
Yamane
, “
Optical trapping and manipulation of single cells using infrared laser beams
,”
Nature
330
(
6150
),
769
771
(
1987
).
35.
O. A.
Schmidt
,
M. K.
Garbos
,
T. G.
Euser
, and
P. St. J.
Russell
, “
Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber
,”
Phys. Rev. Lett.
109
(
2
),
024502
(
2012
).
36.
S.
Lindner
,
P.
Juschitz
,
J.
Rieser
,
Y. Y.
Fein
,
M.
Ciampini
,
M.
Aspelmeyer
, and
N.
Kiesel
, “
Hollow-core fiber loading of nanoparticles into ultra-high vacuum
,”
Appl. Phys. Lett.
124
,
143501
, (
2024
).
37.
D. S.
Bykov
,
P.
Mestres
,
L.
Dania
,
L.
Schmöger
, and
T. E.
Northup
, “
Direct loading of nanoparticles under high vacuum into a Paul trap for levitodynamical experiments
,”
Appl. Phys. Lett.
115
(
3
),
034101
(
2019
).
38.
G. P.
Conangla
,
A. W.
Schell
,
R. A.
Rica
, and
R.
Quidant
, “
Motion control and optical interrogation of a levitating single nitrogen vacancy in vacuum
,”
Nano Lett.
18
(
6
),
3956
3961
(
2018
).
39.
J. P.
Houlton
,
M. L.
Chen
,
M. D.
Brubaker
,
K. A.
Bertness
, and
C. T.
Rogers
, “
Axisymmetric scalable magneto-gravitational trap for diamagnetic particle levitation
,”
Rev. Sci. Instrum.
89
(
12
),
125107
(
2018
).
40.
B. R.
Slezak
,
C. W.
Lewandowski
,
J.-F.
Hsu
, and
B.
D’Urso
, “
Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum
,”
New J. Phys.
20
(
6
),
063028
(
2018
).
41.
J.
Millen
,
P. Z. G.
Fonseca
,
T.
Mavrogordatos
,
T. S.
Monteiro
, and
P. F.
Barker
, “
Cavity cooling a single charged levitated nanosphere
,”
Phys. Rev. Lett.
114
(
12
),
123602
(
2015
).
42.
Yu.
Zhou
and
B. J.
Nelson
, “
Adhesion force modeling and measurement for micromanipulation
,”
Proc. SPIE
3519
,
169
180
(
1998
).
43.
B. K.
Chen
,
Y.
Zhang
, and
Y.
Sun
, “
Overcoming adhesion forces: Active release of micro objects in micromanipulation
,” in
2009 IEEE International Conference on Robotics and Automation
(
IEEE
,
2009
), pp.
2611
2616
.
44.
S.
Kuhn
,
P.
Asenbaum
,
A.
Kosloff
,
M.
Sclafani
,
B. A.
Stickler
,
S.
Nimmrichter
,
K.
Hornberger
,
O.
Cheshnovsky
,
F.
Patolsky
, and
M.
Arndt
, “
Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum
,”
Nano Lett.
15
(
8
),
5604
5608
(
2015
).
45.
S. A.
McLuckey
,
G. J.
Van Berkel
,
G. L.
Glish
,
E. C.
Huang
, and
J. D.
Henion
, “
Ion spray liquid chromatography/ion trap mass spectrometry determination of biomolecules
,”
Anal. Chem.
63
(
4
),
375
383
(
1991
).
46.
V. V.
Golovlev
,
S. L.
Allman
,
W. R.
Garrett
,
N. I.
Taranenko
, and
C. H.
Chen
, “
Laser-induced acoustic desorption
,”
Int. J. Mass Spectrom. Ion Processes
169–170
,
69
78
(
1997
).
47.
U.
Sezer
,
L.
Wörner
,
J.
Horak
,
L.
Felix
,
J.
Tüxen
,
C.
Götz
,
A.
Vaziri
,
M.
Mayor
, and
M.
Arndt
, “
Laser-induced acoustic desorption of natural and functionalized biochromophores
,”
Anal. Chem.
87
(
11
),
5614
5619
(
2015
).
48.
W. M.
Klahold
,
C. W.
Lewandowski
,
P.
Nachman
,
B. R.
Slezak
, and
B.
D’Urso
, “
Precision optomechanics with a particle in a magneto-gravitational trap
,”
Proc. SPIE
10934
,
109340P
(
2019
).
49.
J. H.
de Wilde
, “
Über die dampfdrucke des kampfers
,”
Z. Anorg. Allg. Chem.
233
(
4
),
411
414
(
1937
).
50.
National Institute of Standards and Technology
, NIST Chemistry Webbook, SRD 69 camphor,
2023
.
You do not currently have access to this content.