Here a sealing-style x-ray photoelectron spectroscopy study of the surface of a 1.0 wt. %Ni/TiO2 nanoparticle catalyst in a flowing mixture of CO and O2 at 1 bar was performed with a graphene membrane-sealed Si3N4 window-based miniature cell. We report the details on how a commercial Si3N4 window is modified before assembling a graphene membrane, how single-layer graphene membranes are transferred from their metal supports to the modified Si3N4 window, how a modified Si3N4 window covered with a double-layer graphene membrane is assembled onto a blank cell cap, how a nanoparticle catalyst is introduced to the cell cap and then the cell cap is installed onto a cell body to form a complete reaction cell, and how a complete cell is interfaced with a high vacuum chamber of an XPS system before an XPS study of 1.0 wt. %Ni/TiO2 catalyst surface in a flowing mixture for 0.2 bar CO and 0.8 bar O2 is performed. How the characterization of a catalyst using this type of graphene membrane-sealed Si3N4 window-based miniature cell is relevant to the finding of the actual surface chemistry of a catalyst during catalysis is discussed.

1.
G.
Ertl
,
H.
Knözinger
,
F.
Schüth
, and
J.
Weitkamp
,
Handbook of Heterogeneous Catalysis
(
Wiley VCH
,
2008
).
2.
G.
Somorjai
and
Y.
Li
,
Introduction to Surface Chemistry and Catalysis
(
Wiley VCH
,
2010
).
3.
F.
Tao
,
J.
Shan
,
L.
Nguyen
,
Z.
Wang
,
S.
Zhang
,
L.
Zhang
,
Z.
Wu
,
W.
Huang
,
S.
Zeng
, and
P.
Hu
, “
Understanding complete oxidation of methane on spinel oxides at a molecular level
,”
Nat. Commun.
6
(
1
),
7798
(
2015
).
4.
F.
Tao
,
L.
Nguyen
, and
Y.
Tang
, “
Report on photoelectron-induced excitation spectroscopy and its close correlation with fundamental studies of catalysis
,”
J. Phys. Chem. C
126
(
31
),
13069
13087
(
2022
).
5.
F.
Tao
,
Application of Ambient Pressure X-Ray Photoelectron Spectroscopy to Catalysis
(
Wiley
,
2023
).
6.
F.
Discussions
,
Photoelectron Spectroscopy and the Future of Surface Analysis: Faraday Discussion
(
RSC
,
2022
).
7.
S.
Suga
,
A.
Sekiyama
, and
C.
Tusche
,
Photoelectron Spectroscopy: Bulk and Surface Electronic Structures
, 2nd ed. (
Springer
,
2021
).
8.
J.
Woicik
,
Hard X-Ray Photoelectron Spectroscopy (HAXPES)
(
Springer
,
2016
).
9.
S.
Suga
,
A.
Sekiyama
, and
A.
Sekiyama
,
Photoelectron Spectroscopy: Bulk and Surface Electronic Structures
(
Springer
,
2013
).
10.
S.
Hofmann
,
Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide
(
Springer
,
2012
).
11.
P.
van der Heide
,
X-Ray Photoelectron Spectroscopy: An Introduction to Principles and Practices
(
Wiley
,
2011
).
12.
H. R.
Verma
,
Atomic and Nuclear Analytical Methods: XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques
(
Springer
,
2010
).
13.
A. M.
Ellis
,
M.
Feher
, and
T. G.
Wright
,
Electronic and Photoelectron Spectroscopy: Fundamentals and Case Studies
(
Cambridge University Press
,
2005
).
14.
J. F.
Watts
and
J.
Wolstenholme
,
An Introduction to Surface Analysis by XPS and AES
(
Wiley
,
2003
).
15.
S.
Hüfner
,
Photoelectron Spectroscopy
(
Springer
,
2003
).
16.
T. L.
Barr
,
Modern ESCAThe Principles and Practice of X-Ray Photoelectron Spectroscopy: The Principles and Practice of X-Ray Photoelectron Spectroscopy
(
CRC Press
,
1994
).
17.
D.
Briggs
and
M. P.
Seah
,
Practical Surface Analysis, Auger and X-Ray Photoelectron Spectroscopy
(
Wiley
,
1990
).
18.
V. I.
Nefedov
,
X-Ray Photoelectron Spectroscopy of Solid Surfaces
(
CRC Press
,
1988
).
19.
J. H. D.
Eland
,
Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectron Spectroscopy in the Gas Phase
(
Butterworth-Heinemann
,
1974
).
20.
H.
Siegbahn
and
K.
Siegbahn
, “
ESCA applied to liquids
,”
J. Electron Spectrosc. Relat. Phenom.
2
,
319
(
1973
).
21.
H.
Siegbahn
, “
Electron spectroscopy for chemical analysis of liquids and solutions
,”
J. Phys. Chem.
89
,
897
(
1985
).
22.
R. W.
Joyner
,
M.
Roberts
, and
K.
Yates
, “
A “high-pressure” electron spectrometer for surface studies
,”
Surf. Sci.
87
,
501
509
(
1979
).
23.
H. J.
Ruppender
,
M.
Grunze
,
C. W.
Kong
, and
M.
Wilmers
, “
In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar
,”
Surf. Interface Anal.
15
,
245
(
1990
).
24.
D. F.
Ogletree
,
H.
Bluhm
,
G.
Lebedev
,
C. S.
Fadley
,
Z.
Hussain
, and
M.
Salmeron
, “
A differentially pumped electrostatic lens system for photoemission studies in the millibar range
,”
Rev. Sci. Instrum.
73
,
3872
3877
(
2002
).
25.
L.
Nguyen
,
F.
Tao
,
Y.
Tang
,
J.
Dou
, and
X. J.
Bao
, “
Understanding catalyst surfaces during catalysis through near ambient pressure X-ray photoelectron spectroscopy
,”
Chem. Rev.
119
(
12
),
6822
6905
(
2019
).
26.
M.
Salmeron
and
R.
Schlogl
, “
Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology
,”
Surf. Sci. Rep.
63
,
169
199
(
2008
).
27.
C.
Wen
,
Y.
Zhu
,
Y.
Ye
,
S.
Zhang
,
F.
Cheng
,
Y.
Liu
,
P.
Wang
, and
F.
Tao
, “
Water–gas shift reaction on metal nanoclusters encapsulated in mesoporous ceria studied with ambient-pressure X-ray photoelectron spectroscopy
,”
ACS Nano
6
(
10
),
9305
9313
(
2012
).
28.
F.
Tao
, “
Design of an in-house ambient pressure AP-XPS using a bench-top X-ray source and the surface chemistry of ceria under reaction conditions
,”
Chem. Commun.
48
,
3812
3814
(
2012
).
29.
Y.
Zhu
,
S.
Zhang
,
Y.
Ye
,
X.
Zhang
,
L.
Wang
,
W.
Zhu
,
F.
Cheng
, and
F.
Tao
, “
Catalytic conversion of carbon dioxide to methane on ruthenium–cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances
,”
ACS Catal.
2
(
11
),
2403
2408
(
2012
).
30.
Y.
Zhu
,
Y.
Ye
,
S.
Zhang
,
M. E.
Leong
, and
F.
Tao
, “
Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer–Tropsch synthesis
,”
Langmuir
28
(
21
),
8275
8280
(
2012
).
31.
Y.
Ye
,
L.
Wang
,
S.
Zhang
,
Y.
Zhu
,
J.
Shan
, and
F. F.
Tao
, “
The role of copper in catalytic performance of a Fe–Cu–Al–O catalyst for water gas shift reaction
,”
Chem. Commun.
49
(
39
),
4385
4387
(
2013
).
32.
J.
Shan
,
Y.
Zhu
,
S.
Zhang
,
T.
Zhu
,
S.
Rouvimov
, and
F.
Tao
, “
Catalytic performance and in situ surface chemistry of pure α-MnO2 nanorods in selective reduction of NO and N2O with CO
,”
J. Phys. Chem. C
117
(
16
),
8329
8335
(
2013
).
33.
L.
Wang
,
S.
Zhang
,
Y.
Zhu
,
A.
Patlolla
,
J.
Shan
,
H.
Yoshida
,
S.
Takeda
et al, “
Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2
,”
ACS Catal.
3
(
5
),
1011
1019
(
2013
).
34.
S.
Zhang
,
J.
Shan
,
Y.
Zhu
,
A. I.
Frenkel
,
A.
Patlolla
,
W.
Huang
,
S. J.
Yoon
,
L.
Wang
,
H.
Yoshida
,
S.
Takeda
, and
F.
Tao
, “
WGS catalysis and in situ studies of CoO1–x, PtCon/Co3O4, and PtmCom′/CoO1–x nanorod catalysts
,”
J. Am. Chem. Soc.
135
(
22
),
8283
8293
(
2013
).
35.
S.
Zhang
,
J.
Shan
,
Y.
Zhu
,
L.
Nguyen
,
W.
Huang
,
H.
Yoshida
,
S.
Takeda
, and
F.
Tao
, “
Restructuring transition metal oxide nanorods for 100% selectivity in reduction of nitric oxide with carbon monoxide
,”
Nano Lett.
13
(
7
),
3310
3314
(
2013
).
36.
Y.
Zhu
,
S.
Zhang
,
J.
Shan
,
L.
Nguyen
,
S.
Zhan
,
X.
Gu
, and
F.
Tao
, “
In situ surface chemistries and catalytic performances of ceria doped with palladium, platinum, and rhodium in methane partial oxidation for the production of syngas
,”
ACS Catal.
3
(
11
),
2627
2639
(
2013
).
37.
B.
Zugic
,
S.
Zhang
,
D. C.
Bell
,
F.
Tao
, and
M.
Flytzani-Stephanopoulos
, “
Probing the low-temperature water–gas shift activity of alkali-promoted platinum catalysts stabilized on carbon supports
,”
J. Am. Chem. Soc.
136
(
8
),
3238
3245
(
2014
).
38.
S.
Zeng
,
L.
Nguyen
,
F.
Cheng
,
L.
Liu
,
Y.
Yu
, and
F.
Tao
, “
Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO
,”
Appl. Surf. Sci.
320
,
225
230
(
2014
).
39.
J.
Shan
,
L.
Nguyen
,
S.
Zhang
, and
F.
Tao
, “
Water–gas shift on Pd/α-MnO2 and Pt/α-MnO2
,”
Catal. Lett.
145
,
1571
1580
(
2015
).
40.
L.
Nguyen
,
S.
Zhang
,
S. J.
Yoon
, and
F.
Tao
, “
Preferential oxidation of CO in H2 on pure Co3O4−x and Pt/Co3O4−x
,”
ChemCatChem
7
(
15
),
2346
2353
(
2015
).
41.
S.
Zhang
,
L.
Nguyen
,
J. X.
Liang
,
J.
Shan
,
J.
Liu
,
A. I.
Frenkel
,
A.
Patlolla
,
W.
Huang
,
J.
Li
, and
F.
Tao
, “
Catalysis on singly dispersed bimetallic sites
,”
Nat. Commun.
6
(
1
),
7938
(
2015
).
42.
L.
Nguyen
,
S.
Zhang
,
L.
Wang
,
Y.
Li
,
H.
Yoshida
,
A.
Patlolla
,
S.
Takeda
,
A. I.
Frenkel
, and
F.
Tao
, “
Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con
,”
ACS Catal.
6
(
2
),
840
850
(
2016
).
43.
R. V.
Maligal-Ganesh
,
C.
Xiao
,
T. W.
Goh
,
L. L.
Wang
,
J.
Gustafson
,
Y.
Pei
,
Z.
Qi
,
D. D.
Johnson
,
S.
Zhang
,
F.
Tao
, and
W.
Huang
, “
A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation
,”
ACS Catal.
6
(
3
),
1754
1763
(
2016
).
44.
L.
Nguyen
and
F.
Tao
, “
Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis
,”
Rev. Sci. Instrum.
87
(
6
),
064101
(
2016
).
45.
J.
Liu
,
S.
Zhang
,
Y.
Zhou
,
V.
Fung
,
L.
Nguyen
,
D.
Jiang
,
W.
Shen
,
J.
Fan
, and
F.
Tao
, “
Tuning catalytic selectivity of oxidative catalysis through deposition of nonmetallic atoms in surface lattice of metal oxide
,”
ACS Catal.
6
(
7
),
4218
4228
(
2016
).
46.
C. J.
Keturakis
,
M.
Zhu
,
E. K.
Gibson
,
M.
Daturi
,
F.
Tao
,
A. I.
Frenkel
, and
I. E.
Wachs
, “
Dynamics of CrO3–Fe2O3 catalysts during the high-temperature water-gas shift reaction: Molecular structures and reactivity
,”
ACS Catal.
6
(
7
),
4786
4798
(
2016
).
47.
H.
Sohn
,
I. I.
Soykal
,
S.
Zhang
,
J.
Shan
,
F.
Tao
,
J. T.
Miller
, and
U. S.
Ozkan
, “
Effect of cobalt on reduction characteristics of ceria under ethanol steam reforming conditions: AP-XPS and XANES studies
,”
J. Phys. Chem. C
120
(
27
),
14631
14642
(
2016
).
48.
F.
Tao
,
L.
Nguyen
,
S.
Zhang
,
Y.
Li
,
Y.
Tang
,
L.
Zhang
,
A. I.
Frenkel
,
Y.
Xia
, and
M.
Salmeron
, “
Formation of second-generation nanoclusters on metal nanoparticles driven by reactant gases
,”
Nano Lett.
16
(
8
),
5001
5009
(
2016
).
49.
L.
Nguyen
,
L.
Liu
,
S.
Assefa
,
C.
Wolverton
,
W. F.
Schneider
, and
F.
Tao
, “
Atomic-scale structural evolution of Rh(110) during catalysis
,”
ACS Catal.
7
(
1
),
664
674
(
2017
).
50.
J.
Shan
,
S.
Zhang
,
T.
Choksi
,
L.
Nguyen
,
C. S.
Bonifacio
,
Y.
Li
,
W.
Zhu
,
Y.
Tang
,
Y.
Zhang
,
J. C.
Yang
,
J.
Greeley
,
A. I.
Frenkel
, and
F.
Tao
, “
Tuning catalytic performance through a single or sequential post-synthesis reaction(s) in a gas phase
,”
ACS Catal.
7
(
1
),
191
204
(
2017
).
51.
Z.
Wu
,
Y.
Cheng
,
F.
Tao
,
L.
Daemen
,
G. S.
Foo
,
L.
Nguyen
,
X.
Zhang
,
A.
Beste
, and
A. J.
Ramirez-Cuesta
, “
Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst
,”
J. Am. Chem. Soc.
139
(
28
),
9721
9727
(
2017
).
52.
Y.
Lu
,
R.
Zhang
,
B.
Cao
,
B.
Ge
,
F.
Tao
,
J.
Shan
,
L.
Nguyen
,
Z.
Bao
,
T.
Wu
,
J.
Pote
,
B.
Wang
, and
F.
Yu
, “
Elucidating the copper–Hägg iron carbide synergistic interactions for selective CO hydrogenation to higher alcohols
,”
ACS Catal.
7
(
8
),
5500
5512
(
2017
).
53.
K.
Takanabe
,
A. M.
Khan
,
Y.
Tang
,
L.
Nguyen
,
A.
Ziani
,
B. W.
Jacobs
,
A. M.
Elbaz
,
S. M.
Sarathy
, and
F.
Tao
, “
Integrated in situ characterization of a molten salt catalyst surface: Evidence of sodium peroxide and hydroxyl radical formation
,”
Angew. Chem., Int. Ed.
56
(
35
),
10403
10407
(
2017
).
54.
S. L.
Bergman
,
J.
Granestrand
,
Y.
Tang
,
R. S.
París
,
M.
Nilsson
,
F.
Tao
,
C.
Tang
,
S. J.
Pennycook
,
L. J.
Pettersson
, and
S. L.
Bernasek
, “
In-situ characterization by near-ambient pressure XPS of the catalytically active phase of Pt/Al2O3 during NO and CO oxidation
,”
Appl. Catal., B
220
,
506
511
(
2018
).
55.
Y.
Tang
,
L.
Ma
,
J.
Dou
,
C. M.
Andolina
,
Y.
Li
,
H.
Ma
,
S. D.
House
,
X.
Zhang
,
J.
Yang
, and
F.
Tao
, “
Transition of surface phase of cobalt oxide during CO oxidation
,”
Phys. Chem. Chem. Phys.
20
(
9
),
6440
6449
(
2018
).
56.
F.
Tao
and
L.
Nguyen
, “
Interactions of gaseous molecules with X-ray photons and photoelectrons in AP-XPS study of solid surface in gas phase
,”
Phys. Chem. Chem. Phys.
20
(
15
),
9812
9823
(
2018
).
57.
X.
Zhang
,
S. D.
House
,
Y.
Tang
,
L.
Nguyen
,
Y.
Li
,
A. A.
Opalade
,
J. C.
Yang
,
Z.
Sun
, and
F.
Tao
, “
Complete oxidation of methane on NiO nanoclusters supported on CeO2 nanorods through synergistic effect
,”
ACS Sustainable Chem. Eng.
6
(
5
),
6467
6477
(
2018
).
58.
S. P.
Phivilay
,
C. A.
Roberts
,
A. D.
Gamalski
,
E. A.
Stach
,
S.
Zhang
,
L.
Nguyen
,
Y.
Tang
,
A.
Xiong
,
A. A.
Puretzky
,
F.
Tao
,
K.
Domen
, and
I. E.
Wachs
, “
Anatomy of a visible light activated photocatalyst for water splitting
,”
ACS Catal.
8
(
7
),
6650
6658
(
2018
).
59.
G.
Celik
,
S. A.
Ailawar
,
H.
Sohn
,
Y.
Tang
,
F.
Tao
,
J. T.
Miller
,
P. L.
Edmiston
, and
U. S.
Ozkan
, “
Swellable organically modified silica (SOMS) as a catalyst scaffold for catalytic treatment of water contaminated with trichloroethylene
,”
ACS Catal.
8
(
8
),
6796
6809
(
2018
).
60.
Y.
Chen
,
B.
deGlee
,
Y.
Tang
,
Z.
Wang
,
B.
Zhao
,
Y.
Wei
,
L.
Zhang
,
S.
Yoo
,
K.
Pei
,
J. H.
Kim
,
Y.
Ding
,
P.
Hu
,
F.
Tao
, and
M.
Liu
, “
A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis
,”
Nat. Energy
3
(
12
),
1042
1050
(
2018
).
61.
J.
Liu
,
V.
Fung
,
Y.
Wang
,
K.
Du
,
S.
Zhang
,
L.
Nguyen
,
Y.
Tang
,
J.
Fan
,
D.
Jiang
, and
F.
Tao
, “
Promotion of catalytic selectivity on transition metal oxide through restructuring surface lattice
,”
Appl. Catal., B
237
,
957
969
(
2018
).
62.
L.
Ye
,
A. H.
Mahadi
,
C.
Saengruengrit
,
J.
Qu
,
F.
Xu
,
S. M.
Fairclough
,
N.
Young
,
P. L.
Ho
,
J.
Shan
,
L.
Nguyen
,
F. F.
Tao
,
K.
Tedsree
, and
S. C. E.
Tsang
, “
Ceria nanocrystals supporting Pd for formic acid electrocatalytic oxidation: Prominent polar surface metal support interactions
,”
ACS Catal.
9
(
6
),
5171
5177
(
2019
).
63.
Y.
Tang
,
Y.
Wei
,
Z.
Wang
,
S.
Zhang
,
Y.
Li
,
L.
Nguyen
,
Y.
Li
,
Y.
Zhou
,
W.
Shen
,
F.
Tao
, and
P.
Hu
, “
Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4
,”
J. Am. Chem. Soc.
141
(
18
),
7283
7293
(
2019
).
64.
F.
Polo-Garzon
,
V.
Fung
,
L.
Nguyen
,
Y.
Tang
,
F.
Tao
,
Y.
Cheng
,
L. L.
Daemen
,
A. J.
Ramirez-Cuesta
,
G. S.
Foo
,
M.
Zhu
,
I. E.
Wachs
,
D. E.
Jiang
, and
Z.
Wu
, “
Elucidation of the reaction mechanism for high-temperature water gas shift over an industrial-type copper–chromium–iron oxide catalyst
,”
J. Am. Chem. Soc.
141
(
19
),
7990
7999
(
2019
).
65.
L.
Nguyen
,
S.
Zhang
,
L.
Tan
,
Y.
Tang
,
J.
Liu
, and
F.
Tao
, “
Ir1Znn bimetallic site for efficient production of hydrogen from methanol
,”
ACS Sustainable Chem. Eng.
7
(
23
),
18793
18800
(
2019
).
66.
Y.
Tang
,
S.
Zhang
,
T. B.
Rawal
,
L.
Nguyen
,
Y.
Iwasawa
,
S. R.
Acharya
,
J.
Liu
,
S.
Hong
,
T. S.
Rahman
, and
F.
Tao
, “
Atomic-scale structure and catalysis on positively charged bimetallic sites for generation of H2
,”
Nano Lett.
20
(
9
),
6255
6262
(
2020
).
67.
Y.
Tang
,
V.
Fung
,
X.
Zhang
,
Y.
Li
,
L.
Nguyen
,
T.
Sakata
,
K.
Higashi
,
D.
Jiang
, and
F.
Tao
, “
Single-atom high-temperature catalysis on a Rh1O5 cluster for production of syngas from methane
,”
J. Am. Chem. Soc.
143
(
40
),
16566
16579
(
2021
).
68.
G.
Yan
,
Y.
Tang
,
Y.
Li
,
Y.
Li
,
L.
Nguyen
,
T.
Sakata
,
K.
Higashi
,
F.
Tao
, and
P.
Sautet
, “
Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst
,”
Nat. Catal.
5
(
2
),
119
127
(
2022
).
69.
J.
Kang
,
Q. Y.
Fan
,
W.
Zhou
,
Q.
Zhang
,
S.
He
,
L.
Yue
,
Y.
Tang
,
L.
Nguyen
,
X.
Yu
,
Y.
You
,
H.
Chang
,
X.
Liu
,
L.
Chen
,
Y.
Liu
,
F.
Tao
,
J.
Cheng
, and
Y.
Wang
, “
Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels
,”
CHEM
8
(
4
),
1050
1066
(
2022
).
70.
A. A.
Opalade
,
Y.
Tang
, and
F. F.
Tao
, “
Integrated in situ spectroscopic studies on syngas production from partial oxidation of methane catalyzed by atomically dispersed rhodium cations on ceria
,”
Phys. Chem. Chem. Phys.
25
,
4070
4080
(
2023
).
71.
F.
Tao
and
Y.
Tang
, “
Case studies: Near ambient pressure (NAP) X-ray photoelectron spectroscopy (XPS)
,” in
Springer Handbook of Advanced Catalyst Characterization
(
Springer Nature
,
2023
), pp.
347
355
.
72.
J.
Schnadt
,
J.
Knudsen
, and
N.
Johansson
, “
Present and new frontiers in materials research by ambient pressure x-ray photoelectron spectroscopy
,”
J. Phys.: Condens. Matter
32
,
413003
(
2020
).
73.
P.
Amann
,
D.
Degerman
,
M. T.
Lee
,
J. D.
Alexander
,
M.
Shipilin
,
H. Y.
Wang
,
F.
Cavalca
,
M.
Weston
,
J. M.
GladhBlom
,
M.
Björkhage
,
P.
Löfgren
,
C.
Schlueter
,
P.
Loemker
,
K.
Ederer
,
W. H. J.
DrubeNoeiZehetner
,
H.
Wentzel
,
J.
Åhlund
, and
A.
Nilsson
, “
A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars
,”
Rev. Sci. Instrum.
90
,
103102
(
2019
).
74.
D.
Degerman
,
P.
Lömker
,
C. M.
Goodwin
,
M.
Shipilin
,
F.
García-Martínez
,
C.
Schlueter
,
A.
Nilsson
, and
P.
Amann
, “
State of the surface during CO hydrogenation over Ni(111) and Ni(211) probed by operando X-ray photoelectron spectroscopy
,”
J. Phys. Chem. C
127
,
4021
4032
(
2023
).
75.
M.
Shipilin
,
D.
Degerman
,
P.
Lömker
,
C. M.
Goodwin
,
G. L. S.
Rodrigues
,
M.
Wagstaffe
,
J.
Gladh
,
H.-Y.
Wang
et al, “
In situ surface-sensitive investigation of multiple carbon phases on Fe(110) in the Fischer–Tropsch synthesis
,”
ACS Catal.
12
,
7609
7621
(
2022
).
76.
P.
Amann
,
B.
Klötzer
,
D.
Degerman
,
N.
Köpfle
,
T.
Götsch
,
P.
Lömker
,
C.
Rameshan
,
K.
Ploner
,
D.
Bikaljevic
,
H.-Y.
Wang
,
M.
Soldemo
,
M.
Shipilin
,
C. M.
Goodwin
,
J.
Gladh
,
J.
Halldin Stenlid
,
M.
Börner
,
C.
Schlueter
, and
A.
Nilsson
,
Science
376
,
603
608
(
2022
).
77.
A.
Kolmakov
,
D. A.
Dikin
,
L. J.
Cote
,
J.
Huang
,
M. K.
Abyaneh
,
M.
Amati
,
L.
Gregoratti
,
S.
Günther
, and
M.
Kiskinova
, “
Graphene oxide windows for in situ environmental cell photoelectron spectroscopy
,”
Nat. Nanotechnol.
6
,
651
657
(
2011
).
78.
J. J.
Velasco-Velez
,
V.
Pfeifer
,
M.
Hävecker
,
R. S.
Weatherup
,
R.
Arrigo
,
C. H.
Chuang
,
E.
Stotz
,
G.
Weinberg
,
M.
Salmeron
,
R.
Schlögl
, and
A.
Knop-Gericke
, “
Photoelectron spectroscopy at the graphene–liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst
,”
Angew. Chem., Int. Ed.
54
,
14554
14558
(
2015
).
79.
L. J.
Falling
,
R. V.
Mom
,
L. E.
Sandoval Diaz
,
S.
Nakhaie
,
E.
Stotz
,
D.
Ivanov
,
M.
Hävecker
,
T.
Lunkenbein
,
A.
Knop-Gericke
,
R.
Schlögl
, and
J. J.
Velasco-Vélez
, “
Graphene-capped liquid thin films for electrochemical operando X-ray spectroscopy and scanning electron microscopy
,”
ACS Appl. Mater. Interfaces
12
(
33
),
37680
37692
(
2020
).
80.
J. J.
Velasco-Vélez
,
V.
Pfeifer
,
M.
Hävecker
,
R.
Wang
,
A.
Centeno
,
A.
Zurutuza
,
G.
Algara-Siller
,
E.
Stotz
,
K.
Skorupska
,
D.
Teschner
,
P.
Kube
,
P.
Braeuninger-Weimer
,
S.
Hofmann
,
R.
Schlögl
, and
A.
Knop-Gericke
, “
Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap
,”
Rev. Sci. Instrum.
87
,
053121
(
2016
).
81.
R. S.
Weatherup
,
B.
Eren
,
Y.
Hao
,
H.
Bluhm
, and
M. B.
Salmeron
, “
Graphene membranes for atmospheric pressure photoelectron spectroscopy
,”
J. Phys. Chem. Lett.
7
,
1622
1627
(
2016
).
82.
L.
Nguyen
,
P.
Tao
,
H.
Liu
,
M.
Al-Hada
,
M.
Amati
,
H.
Sezen
,
L.
Gregoratti
,
Y.
Tang
,
S. D.
House
, and
F.
Tao
, “
X-Ray photoelectron spectroscopy studies of nanoparticles dispersed in static liquid
,”
Langmuir
34
,
9606
9616
(
2018
).
83.
L.
Nguyen
,
P.
Tao
,
H.
Liu
,
M.
Al-Hada
,
M.
Amati
,
H.
Sezen
,
Y.
Tang
,
L.
Gregoratti
, and
F.
Tao
, “
Studies of surface of metal nanoparticles in a flowing liquid with XPS
,”
Chem. Commun.
54
(
71
),
9981
9984
(
2018
).
84.
L.
Marton
, “
La microscopie electronique des objects biologiques
,”
Bull. Acad. R. Belg.
21
,
553
560
(
1935
).
85.
N.
Kohyama
,
K.
Fukushima
, and
A.
Fukami
, “
Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell
,”
Clays Clay Miner.
26
,
25
40
(
1978
).
86.
E.
de Smit
,
I.
Swart
,
J. F.
Creemer
,
G. H.
Hoveling
,
M. K.
Gilles
,
T.
Tyliszczak
,
P. J.
Kooyman
et al, “
Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy
,”
Nature
456
,
222
(
2008
).
87.
J. F.
Creemer
,
S.
Helveg
,
G. H.
Hoveling
,
S.
Ullmann
,
A. M.
Molenbroek
,
P. M.
Sarro
, and
H. W.
Zandbergen
, “
Atomic-scale electron microscopy at ambient pressure
,”
Ultramicroscopy
108
,
993
(
2008
).
88.
T. L.
Daulton
,
B. J.
Little
,
K.
Lowe
, and
J.
Jones-Meehan
, “
In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy
,”
Microsc. Microanal.
7
,
470
485
(
2001
).
89.
P. L.
Gai
and
J. J.
Calvino
, “
Electron microscopy in the catalysis of alkane oxidation, environmental control, and alternative energy sources
,”
Annu. Rev. Mater. Res.
35
,
465
504
(
2005
).
90.
S.
Thiberge
,
O.
Zik
, and
E.
Moses
, “
An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy
,”
Rev. Sci. Instrum.
75
,
2280
2289
(
2004
).
91.
N.
de Jonge
,
D. B.
Peckys
,
G. J.
Kremers
, and
D. W.
Piston
, “
Electron microscopy of whole cells in liquid with nanometer resolution
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
2159
2164
(
2009
).
92.
J.
Park
,
H.
Elmlund
,
P.
Ercius
,
J. M.
Yuk
,
D. T.
Limmer
,
Q.
Chen
,
K.
Kim
,
S. H.
Han
,
D. A.
Weitz
,
A.
Zettl
, and
A. P.
Alivisatos
, “
3D structure of individual nanocrystals in solution by electron microscopy
,”
Science
349
,
290
295
(
2015
).
93.
M.
Krueger
,
S.
Berg
,
D.
Stone
,
E.
Strelcov
,
D. A.
Dikin
,
J.
Kim
,
L. J.
Cote
,
J.
Huang
, and
A.
Kolmakov
, “
Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples
,”
ACS Nano
5
,
10047
10054
(
2011
).
94.
C. H.
Wu
,
R. S.
Weatherup
, and
M. B.
Salmeron
, “
Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: Old methods, new tricks
,”
Phys. Chem. Chem. Phys.
17
(
45
),
30229
30239
(
2015
).
95.
C.
Wang
,
Q.
Qiao
,
T.
Shokuhfar
, and
R. F.
Klie
, “
High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches
,”
Adv. Mater.
26
,
3410
3414
(
2014
).
96.
J.
Park
,
H.
Park
,
P.
Ercius
,
A. F.
Pegoraro
,
C.
Xu
,
J. W.
Kim
,
S. H.
Han
, and
D. A.
Weitz
, “
Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy
,”
Nano Lett.
15
,
4737
4744
(
2015
).
97.
J. M.
Yuk
,
J.
Park
,
P.
Ercius
,
K.
Kim
,
D. J.
Hellebusch
,
M. F.
Crommie
,
J. Y.
Lee
,
A.
Zettl
, and
A. P.
Alivisatos
, “
High-resolution EM of colloidal nanocrystal growth using graphene liquid cells
,”
Science
336
,
61
64
(
2012
).
You do not currently have access to this content.