Magnetic particle tracking (MPT) is a recently developed non-invasive measurement technique that has gained popularity for studying dense particulate or granular flows. This method involves tracking the trajectory of a magnetically labeled particle, the field of which is modeled as a dipole. The nature of this method allows it to be used in opaque environments, which can be highly beneficial for the measurement of dense particle dynamics. However, since the magnetic field of the particle used is weak, the signal-to-noise ratio is usually low. The noise from the measuring devices contaminates the reconstruction of the magnetic tracer’s trajectory. A filter is then needed to reduce the noise in the final trajectory results. In this work, we present a neural network-based framework for MPT trajectory reconstruction and filtering, which yields accurate results and operates at very high speed. The reconstruction derived from this framework is compared to the state-of-the-art extended Kalman filter-based reconstruction.

1.
R.
Ni
,
S.
Kramel
,
N. T.
Ouellette
, and
G. A.
Voth
, “
Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence
,”
J. Fluid Mech.
766
,
202
225
(
2015
).
2.
G. A.
Voth
and
A.
Soldati
, “
Anisotropic particles in turbulence
,”
Annu. Rev. Fluid Mech.
49
(
1
),
249
276
(
2017
).
3.
A.
Guida
,
A. W.
Nienow
, and
M.
Barigou
, “
Lagrangian tools for the analysis of mixing in single-phase and multiphase flow systems
,”
AIChE J.
58
(
1
),
31
45
(
2011
).
4.
C. T.
Crowe
,
J. D.
Schwarzkof
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
2012
).
5.
W.
Rong
,
Y.
Feng
,
P.
Schwarz
,
P.
Witt
,
B.
Li
,
T.
Song
, and
J.
Zhou
, “
Numerical study of the solid flow behavior in a rotating drum based on a multiphase CFD model accounting for solid frictional viscosity and wall friction
,”
Powder Technol.
361
,
87
98
(
2020
).
6.
J. S.
Lin
,
M. M.
Chen
, and
B. T.
Chao
, “
A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds
,”
AIChE J.
31
(
3
),
465
473
(
1985
).
7.
D. J.
Parker
,
C. J.
Broadbent
,
P.
Fowles
,
M. R.
Hawkesworth
, and
P.
McNeil
, “
Positron emission particle tracking—A technique for studying flow within engineering equipment
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
326
(
3
),
592
607
(
1993
).
8.
B. P. B.
Hoomans
,
J. A. M.
Kuipers
,
M. A.
Mohd Salleh
,
M.
Stein
, and
J. P. K.
Seville
, “
Experimental validation of granular dynamics simulations of gas-fluidised beds with homogenous in-flow conditions using positron emission particle tracking
,”
Powder Technol.
116
(
2–3
),
166
177
(
2001
).
9.
M.
Nakagawa
,
S. A.
Altobelli
,
A.
Caprihan
,
E.
Fukushima
, and
E. K.
Jeong
, “
Non-invasive measurements of granular flows by magnetic resonance imaging
,”
Exp. Fluids
16
,
54
60
(
1993
).
10.
D. J.
Parker
,
R. N.
Forster
,
P.
Fowles
, and
P. S.
Takhar
, “
Positron emission particle tracking using the new Birmingham positron camera
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
477
(
1–3
),
540
545
(
2002
).
11.
T.
Pöschel
and
N.
Brilliantov
,
Granular Gas Dynamics
(
Springer
,
Berlin/Heidelberg
,
2003
).
12.
A.
Hassanpour
,
H.
Tan
,
A.
Bayly
,
P.
Gopalkrishnan
,
B.
Ng
, and
M.
Ghadiri
, “
Analysis of particle motion in a paddle mixer using discrete element method (DEM)
,”
Powder Technol.
206
(
1–2
),
189
194
(
2011
).
13.
J. H.
Ferziger
,
M.
Perić
, and
R. L.
Street
,
Computational Methods for Fluid Dynamics
(
Springer
,
2019
).
14.
A. L.
Nicuşan
and
C. R.
Windows-Yule
, “
Positron emission particle tracking using machine learning
,”
Rev. Sci. Instrum.
91
(
1
),
013329
(
2020
).
15.
R.
Stannarius
, “
Magnetic resonance imaging of granular materials
,”
Rev. Sci. Instrum.
88
(
5
),
051806
(
2017
).
16.
A.
Köhler
,
D.
Pallarès
, and
F.
Johnsson
, “
Magnetic tracking of a fuel particle in a fluid-dynamically down-scaled fluidised bed
,”
Fuel Process. Technol.
162
,
147
156
(
2017
).
17.
P.
Jayaprakash
, “
Granular hydrodynamic study of non-spherical particles in a 3D fluidized bed
,”
Master's dissertation
,
Eindhoven University of Technology
,
2016
.
18.
I.
Mema
,
K. A.
Buist
,
J. A. M.
Kuipers (Hans)
, and
J. T.
Padding
, “
Fluidization of spherical versus elongated particles: Experimental investigation using magnetic particle tracking
,”
AIChE J.
66
(
4
),
e16895
(
2019
).
19.
I.
Mema
,
V.
Mahajan
,
B.
Fitzgerald
,
H.
Kuipers
, and
J.
Padding
, “
Effect of lift force on dense gas-fluidized beds of non-spherical particles
,” in
Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil and Gas, Metallurgical and Process Industries
(
SINTEF
,
2017
), Vol.
2
, pp.
71
79
.
20.
I.
Mema
,
V. V.
Mahajan
,
B. W.
Fitzgerald
, and
J. T.
Padding
, “
Effect of lift force and hydrodynamic torque on fluidisation of non-spherical particles
,”
Chem. Eng. Sci.
195
,
642
656
(
2019
).
21.
W.
Andrä
,
H.
Danan
,
W.
Kirmße
,
H.-H.
Kramer
,
P.
Saupe
,
R.
Schmieg
, and
M. E.
Bellemann
, “
A novel method for real-time magnetic marker monitoring in the gastrointestinal tract
,”
Phys. Med. Biol.
45
(
10
),
3081
3093
(
2000
).
22.
R. F.
Wiegert
, “
Magnetic STAR technology for real-time localization and classification of unexploded ordnance and buried mines
,”
Proc. SPIE
7303
,
73031U
(
2009
).
23.
T.
Nara
,
S.
Suzuki
, and
S.
Ando
, “
A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients
,”
IEEE Trans. Magn.
42
(
10
),
3291
3293
(
2006
).
24.
Y.
Sui
,
G.
Li
,
S.
Wang
, and
J.
Lin
, “
Asphericity errors correction of magnetic gradient tensor invariants method for magnetic dipole localization
,”
IEEE Trans. Magn.
48
(
12
),
4701
4706
(
2012
).
25.
H. H.
Jin
,
Z. H.
Zhuang
, and
H. B.
Wang
, “
None-asphericity-error method for magnetic dipole target detection
,”
IEEE Geosci. Remote Sens. Lett.
15
(
8
),
1294
1298
(
2018
).
26.
G.
Yin
,
P.
Li
,
Z.
Wei
,
G.
Liu
,
Z.
Yang
, and
L.
Zhao
, “
Magnetic dipole localization and magnetic moment estimation method based on normalized source strength
,”
J. Magn. Magn. Mater.
502
,
166450
(
2020
).
27.
K. A.
Buist
and
T. M. J.
Nijssen
, “
Magnetic particle tracking: A semi-algebraic solution
,”
Chem. Eng. Sci.
265
,
118212
(
2023
).
28.
H.
Wu
,
P.
Du
,
R.
Kokate
, and
J.-X.
Wang
, “
A semi-analytical solution and AI-based reconstruction algorithms for magnetic particle tracking
,”
PLoS One
16
(
7
),
e0254051
(
2021
).
29.
K. A.
Buist
,
A. C.
van der Gaag
,
N. G.
Deen
, and
J. A.
Kuipers
, “
Improved magnetic particle tracking technique in dense gas fluidized beds
,”
AIChE J.
60
(
9
),
3133
3142
(
2014
).
30.
L.
Yang
,
J. T.
Padding
,
K. A.
Buist
, and
J. A. M.
Kuipers
, “
Three-dimensional fluidized beds with rough spheres: Validation of a two fluid model by magnetic particle tracking and discrete particle simulations
,”
Chem. Eng. Sci.
174
,
238
258
(
2017
).
31.
A.-C.
Böttcher
,
C.
Schilde
, and
A.
Kwade
, “
Experimental assessment of grinding bead velocity distributions and stressing conditions in stirred media mills
,”
Adv. Powder Technol.
32
(
2
),
413
423
(
2021
).
32.
T. M.
Nijssen
,
M. A. H.
van Dijk
,
H. A.
Kuipers
,
J.
van der Stel
,
A. T.
Adema
, and
K. A.
Buist
, “
Experiments on floating bed rotating drums using magnetic particle tracking
,”
AIChE J.
68
(
5
),
e17627
(
2022
).
33.
L.
Zhang
,
F.
Weigler
,
V.
Idakiev
,
Z.
Jiang
,
L.
Mörl
,
J.
Mellmann
, and
E.
Tsotsas
, “
Experimental study of the particle motion in flighted rotating drums by means of magnetic particle tracking
,”
Powder Technol.
339
,
817
826
(
2018
).
34.
J.
Neuwirth
,
S.
Antonyuk
,
S.
Heinrich
, and
M.
Jacob
, “
CFD–DEM study and direct measurement of the granular flow in a rotor granulator
,”
Chem. Eng. Sci.
86
,
151
163
(
2013
).
35.
K. A.
Buist
,
P.
Jayaprakash
,
J. A. M.
Kuipers
,
N. G.
Deen
, and
J. T.
Padding
, “
Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed
,”
AIChE J.
63
(
12
),
5335
5342
(
2017
).
36.
E.
Sette
,
D.
Pallarès
,
F.
Johnsson
,
F.
Ahrentorp
,
A.
Ericsson
, and
C.
Johansson
, “
Magnetic tracer-particle tracking in a fluid dynamically down-scaled bubbling fluidized bed
,”
Fuel Process. Technol.
138
,
368
377
(
2015
).
37.
A.
Köhler
,
A.
Rasch
,
D.
Pallarès
, and
F.
Johnsson
, “
Experimental characterization of axial fuel mixing in fluidized beds by magnetic particle tracking
,”
Powder Technol.
316
,
492
499
(
2017
).
38.
X.
Tao
,
X.
Tu
, and
H.
Wu
, “
A new development in magnetic particle tracking technology and its application in a sheared dense granular flow
,”
Rev. Sci. Instrum.
90
(
6
),
065116
(
2019
).
39.
H.
Zhang
,
C.
Wei
,
M.
Zhao
,
Q.
Liu
, and
H.
Wu
, “
A novel convolutional neural network model to remove muscle artifacts from EEG
,” in
ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
2021
).
40.
A.
Rasti-Meymandi
and
A.
Ghaffari
, “
A deep learning-based framework for ECG signal denoising based on stacked cardiac cycle tensor
,”
Biomed. Signal Process. Control
71
,
103275
(
2022
).
41.
P.
Xiong
,
H.
Wang
,
M.
Liu
,
S.
Zhou
,
Z.
Hou
, and
X.
Liu
, “
ECG signal enhancement based on improved denoising auto-encoder
,”
Eng. Appl. Artif. Intell.
52
,
194
202
(
2016
).
42.
J.
Rock
,
M.
Toth
,
E.
Messner
,
P.
Meissner
, and
F.
Pernkopf
, “
Complex signal denoising and interference mitigation for automotive radar using convolutional neural networks
,” in
2019 22th International Conference on Information Fusion (FUSION)
(
IEEE
,
2019
).
43.
C.
Weng
,
D.
Yu
,
S.
Watanabe
, and
B.-H. F.
Juang
, “
Recurrent deep neural networks for robust speech recognition
,” in
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
2014
).
44.
P.
Huang
,
M.
Kim
,
M. A.
Hasegawa-Johnson
, and
P.
Smaragdis
, “
Singing-voice separation from monaural recordings using deep recurrent neural networks
,” in
International Society for Music Information Retrieval Conference
(
IEEE
,
2014
).
45.
S.
Poungponsri
and
X.-H.
Yu
, “
Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks
,” in
2009 IEEE International Conference on Automation and Logistics
(
IEEE
,
2009
).
46.
C. T. C.
Arsene
,
R.
Hankins
, and
H.
Yin
, “
Deep learning models for denoising ECG signals
,” in
2019 27th European Signal Processing Conference (EUSIPCO)
(
IEEE
,
2019
).
47.
W.
Zhu
,
S. M.
Mousavi
, and
G. C.
Beroza
, “
Seismic signal denoising and decomposition using deep neural networks
,”
IEEE Trans. Geosci. Remote Sens.
57
(
11
),
9476
9488
(
2019
).
48.
A.
Fuchs
,
J.
Rock
,
M.
Toth
,
P.
Meissner
, and
F.
Pernkopf
, “
Complex-valued convolutional neural networks for enhanced radar signal denoising and interference mitigation
,” in
2021 IEEE Radar Conference (RadarConf21)
(
IEEE
,
2021
).
49.
K.
Antczak
, “
Deep recurrent neural networks for ECG signal denoising
,” arXiv:1807.11551 (
2018
).
50.
W.
Wang
,
B.
Li
, and
H.
Wang
, “
A novel end-to-end network based on a bidirectional GRU and a self-attention mechanism for denoising of Electroencephalography signals
,”
Neuroscience
505
,
10
20
(
2022
).
51.
Z.
Zhao
,
Z.
Wu
,
Y.
Zheng
, and
P.
Ma
, “
Recurrent neural networks for atmospheric noise removal from InSAR time series with missing values
,”
ISPRS J. Photogramm. Remote Sens.
180
,
227
237
(
2021
).
52.
K.
Tan
and
D.
Wang
, “
A convolutional recurrent neural network for real-time speech enhancement
,” in
Proceedings of Interspeech
, Hyderabad, India, 2–6 September 2018, pp. 3229–3233.
53.
L.
Sun
,
J.
Du
,
L.-R.
Dai
, and
C.-H.
Lee
, “
Multiple-target deep learning for LSTM-RNN based speech enhancement
,” in
2017 Hands-Free Speech Communications and Microphone Arrays (HSCMA)
(
IEEE
,
2017
), pp.
136
140
.
54.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
,”
Neural Networks
3
(
5
),
551
560
(
1990
).
55.
K.
Hornik
, “
Approximation capabilities of multilayer feedforward networks
,”
Neural Networks
4
(
2
),
251
257
(
1991
).
56.
T.
Kailath
,
A. H.
Sayed
, and
B.
Hassibi
,
Linear Estimation
(
Prentice Hall
,
2000
).
57.
R. J.
Williams
and
J.
Peng
, “
An efficient gradient-based algorithm for on-line training of recurrent network trajectories
,”
Neural Comput.
2
(
4
),
490
501
(
1990
).
58.
I.
Sutskever
, “
Training recurrent neural networks
,”
Ph.D. dissertation
,
University of Toronto
,
2013
.
59.
S.
Jeong
,
M.
Ferguson
,
R.
Hou
,
J. P.
Lynch
,
H.
Sohn
, and
K. H.
Law
, “
Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring
,”
Adv. Eng. Inf.
42
,
100991
(
2019
).
60.
W.
Choi
and
S.
Lee
, “
Performance evaluation of deep learning architectures for load and temperature forecasting under dataset size constraints and seasonality
,”
Energy Build.
288
,
113027
(
2023
).
61.
Z.
Niu
,
G.
Zhong
,
G.
Yue
,
L.-N.
Wang
,
H.
Yu
,
X.
Ling
, and
J.
Dong
, “
Recurrent attention unit: A new gated recurrent unit for long-term memory of important parts in sequential data
,”
Neurocomputing
517
,
1
9
(
2023
).
62.
G.-B.
Zhou
,
J.
Wu
,
C.-L.
Zhang
, and
Z.-H.
Zhou
, “
Minimal gated unit for recurrent neural networks
,”
Int. J. Autom. Comput.
13
(
3
),
226
234
(
2016
).
You do not currently have access to this content.