Scanning Thermal Microscopy (SThM) has become an important measurement technique for characterizing the thermal properties of materials at the nanometer scale. This technique requires a SThM probe that combines an Atomic Force Microscopy (AFM) probe and a very sensitive resistive thermometer; the thermometer being located at the apex of the probe tip allows for the mapping of temperature or thermal properties of nanostructured materials with very high spatial resolution. The high interest of the SThM technique in the field of thermal nanoscience currently suffers from a low temperature sensitivity despite its high spatial resolution. To address this challenge, we developed a high vacuum-based AFM system hosting a highly sensitive niobium nitride (NbN) SThM probe to demonstrate its unique performance. As a proof of concept, we utilized this custom-built system to carry out thermal measurements using the 3ω method. By measuring the V3ω voltage on the NbN resistive thermometer under vacuum conditions, we were able to determine the SThM probe’s thermal conductance and thermal time constant. The performance of the probe is demonstrated by performing thermal measurements in-contact with a sapphire sample.
Skip Nav Destination
Article navigation
Research Article|
May 30 2024
Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer
R. Swami
;
R. Swami
(Data curation, Formal analysis, Investigation, Resources, Visualization, Writing – original draft, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
Search for other works by this author on:
G. Julié
;
G. Julié
(Investigation, Methodology, Resources, Validation, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
Search for other works by this author on:
S. Le-Denmat;
S. Le-Denmat
(Data curation, Methodology)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
Search for other works by this author on:
G. Pernot
;
G. Pernot
(Investigation, Methodology, Software, Validation, Writing – review & editing)
3Université de Lorraine, CNRS, LEMTA, Nancy F-54000, France
Search for other works by this author on:
D. Singhal
;
D. Singhal
(Methodology, Validation, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
Search for other works by this author on:
J. Paterson
;
J. Paterson
(Formal analysis, Investigation, Methodology, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
Search for other works by this author on:
J. Maire
;
J. Maire
(Investigation, Methodology, Software, Validation, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
Search for other works by this author on:
J. F. Motte;
J. F. Motte
(Investigation, Methodology, Validation, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
Search for other works by this author on:
N. Paillet
;
N. Paillet
(Investigation, Methodology, Resources, Software, Validation, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
Search for other works by this author on:
H. Guillou
;
H. Guillou
(Data curation, Investigation, Validation, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
Search for other works by this author on:
S. Gomès
;
S. Gomès
(Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Validation, Visualization, Writing – original draft, Writing – review & editing)
4
CETHIL, CNRS
, 9 Rue de la Physique, 69621 Villeurbanne, France
Search for other works by this author on:
O. Bourgeois
O. Bourgeois
a)
(Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Writing – original draft, Writing – review & editing)
1
Institut Néel, CNRS
, 25 Avenue des Martyrs, 38042 Grenoble, France
2
Université Grenoble Alpes, Institut Néel
, 38042 Grenoble, France
a)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
a)Author to whom correspondence should be addressed: [email protected]
Rev. Sci. Instrum. 95, 054904 (2024)
Article history
Received:
February 17 2024
Accepted:
May 08 2024
Citation
R. Swami, G. Julié, S. Le-Denmat, G. Pernot, D. Singhal, J. Paterson, J. Maire, J. F. Motte, N. Paillet, H. Guillou, S. Gomès, O. Bourgeois; Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer. Rev. Sci. Instrum. 1 May 2024; 95 (5): 054904. https://doi.org/10.1063/5.0203890
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Overview of the early campaign diagnostics for the SPARC tokamak (invited)
M. L. Reinke, I. Abramovic, et al.
An instrumentation guide to measuring thermal conductivity using frequency domain thermoreflectance (FDTR)
Dylan J. Kirsch, Joshua Martin, et al.
A glovebox-integrated confocal microscope for quantum sensing in inert atmosphere
Kseniia Volkova, Abhijeet M. Kumar, et al.
Related Content
Quantitative temperature distribution measurements by non-contact scanning thermal microscopy using Wollaston probes under ambient conditions
Rev. Sci. Instrum. (January 2020)
Thermal and spatial resolution in scanning thermal microscopy images: A study on the probe’s heating parameters
J. Appl. Phys. (April 2021)
Nanoscale thermal conductivity of Kapton-derived carbonaceous materials
J. Appl. Phys. (February 2022)
Thermal properties of SnSe nanoflakes by AFM-based scanning thermal microscopy measurements
Appl. Phys. Lett. (December 2024)