Scanning Thermal Microscopy (SThM) has become an important measurement technique for characterizing the thermal properties of materials at the nanometer scale. This technique requires a SThM probe that combines an Atomic Force Microscopy (AFM) probe and a very sensitive resistive thermometer; the thermometer being located at the apex of the probe tip allows for the mapping of temperature or thermal properties of nanostructured materials with very high spatial resolution. The high interest of the SThM technique in the field of thermal nanoscience currently suffers from a low temperature sensitivity despite its high spatial resolution. To address this challenge, we developed a high vacuum-based AFM system hosting a highly sensitive niobium nitride (NbN) SThM probe to demonstrate its unique performance. As a proof of concept, we utilized this custom-built system to carry out thermal measurements using the 3ω method. By measuring the V3ω voltage on the NbN resistive thermometer under vacuum conditions, we were able to determine the SThM probe’s thermal conductance and thermal time constant. The performance of the probe is demonstrated by performing thermal measurements in-contact with a sapphire sample.

1.
E.
Pop
, “
Energy dissipation and transport in nanoscale devices
,”
Nano Res.
3
,
147
(
2010
).
2.
O.
Bourgeois
,
D.
Tainoff
,
A.
Tavakoli
,
Y.
Liu
,
C.
Blanc
,
M.
Boukhari
,
A.
Barski
, and
E.
Hadji
, “
Reduction of phonon mean free path: From low-temperature physics to room temperature applications in thermoelectricity
,”
C. R. Phys.
17
,
1154
(
2016
).
3.
I.
Zardo
and
R.
Rurali
, “
Manipulating phonons at the nanoscale: Impurities and boundaries
,”
Curr. Opin. Green Sustainable Chem.
17
,
1
(
2019
).
4.
A. L.
Moore
and
L.
Shi
, “
Emerging challenges and materials for thermal management of electronics
,”
Mater. Today
17
,
163
(
2014
).
5.
D.
Dávila
,
A.
Tarancon
,
C.
Calaza
,
M.
Salleras
,
M.
Fernández-Regúlez
,
A.
San Paulo
, and
L.
Fonseca
, “
Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices
,”
Nano Energy
1
,
812
(
2012
).
6.
A.
Perez-Marín
,
A.
Lopeandía
,
L.
Abad
,
P.
Ferrando-Villaba
,
G.
Garcia
,
A.
Lopez
,
F.
Muñoz-Pascual
, and
J.
Rodríguez-Viejo
, “
Micropower thermoelectric generator from thin si membranes
,”
Nano Energy
4
,
73
(
2014
).
7.
A.
Varpula
,
A. V.
Timofeev
,
A.
Shchepetov
,
K.
Grigoras
,
J.
Hassel
,
J.
Ahopelto
,
M.
Ylilammi
, and
M.
Prunnila
, “
Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes
,”
Appl. Phys. Lett.
110
,
262101
(
2017
).
8.
D.
Tainoff
,
A.
Proudhom
,
C.
Tur
,
T.
Crozes
,
S.
Dufresnes
,
S.
Dumont
,
D.
Bourgault
, and
O.
Bourgeois
, “
Network of thermoelectric nanogenerators for low power energy harvesting
,”
Nano Energy
57
,
804
(
2019
).
9.
D.
Singhal
,
J.
Paterson
,
M.
Ben-Khedim
,
D.
Tainoff
,
L.
Cagnon
,
J.
Richard
,
E.
Chavez-Angel
,
J. J.
Fernandez
,
C. M.
Sotomayor-Torres
,
D.
Lacroix
,
D.
Bourgault
,
D.
Buttard
, and
O.
Bourgeois
, “
Nanowire forest of pnictogen–chalcogenide alloys for thermoelectricity
,”
Nanoscale
11
,
13423
(
2019
).
10.
A.
Harzheim
,
C.
Evangeli
,
O. V.
Kolosov
, and
P.
Gehring
, “
Direct mapping of local Seebeck coefficient in 2d material nanostructures via scanning thermal gate microscopy
,”
2D Mater.
7
,
041004
(
2020
).
11.
F.
Menges
,
H.
Riel
,
A.
Stemmer
, and
B.
Gotsmann
, “
Nanoscale thermometry by scanning thermal microscopy
,”
Rev. Sci. Instrum.
87
,
074902
(
2016
).
12.
A.
Tavakoli
,
K.
Lulla
,
T.
Crozes
,
N.
Mingo
,
E.
Collin
, and
O.
Bourgeois
, “
Heat conduction measurements in ballistic 1d phonon waveguides indicate breakdown of the thermal conductance quantization
,”
Nat. Commun.
9
,
4287
(
2018
).
13.
L.
Cui
,
S.
Hur
,
Z. A.
Akbar
,
J. C.
Klöckner
,
W.
Jeong
,
F.
Pauly
,
S.-Y.
Jang
,
P.
Reddy
, and
E.
Meyhofer
, “
Thermal conductance of single-molecule junctions
,”
Nature
572
,
628
(
2019
).
14.
P.
Gehring
,
M.
Van Der Star
,
C.
Evangeli
,
J. J.
Le Roy
,
L.
Bogani
,
O. V.
Kolosov
, and
H. S.
Van Der Zant
, “
Efficient heating of single-molecule junctions for thermoelectric studies at cryogenic temperatures
,”
Appl. Phys. Lett.
115
,
073103
(
2019
).
15.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodson
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
S. R.
Phillpot
,
E.
Pop
, and
L.
Shi
, “
Nanoscale thermal transport. II. 2003-2012
,”
Appl. Phys. Rev.
1
,
011305
(
2014
).
16.
D.
Zhao
,
X.
Qian
,
X.
Gu
,
S. A.
Jajja
, and
R.
Yang
, “
Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials
,”
J. Electron. Packag.
138
,
040802
(
2016
).
17.
A.
Majumdar
, “
Scanning thermal microscopy
,”
Annu. Rev. Mater. Sci.
29
,
505
(
1999
).
18.
S.
Gomès
,
A.
Assy
, and
P.-O.
Chapuis
, “
Scanning thermal microscopy: A review
,”
Phys. Status Solidi A
212
,
477
(
2015
).
19.
Y.
Zhang
,
W.
Zhu
,
F.
Hui
,
M.
Lanza
,
T.
Borca-Tasciuc
, and
M.
Muñoz Rojo
, “
A review on principles and applications of scanning thermal microscopy (SThM)
,”
Adv. Funct. Mater.
30
,
1900892
(
2020
).
20.
C.
Williams
and
H.
Wickramasinghe
, “
Scanning thermal profiler
,”
Appl. Phys. Lett.
49
,
1587
(
1986
).
21.
J.
Weaver
,
L.
Walpita
, and
H.
Wickramasinghe
, “
Optical absorption microscopy and spectroscopy with nanometre resolution
,”
Nature
342
,
783
(
1989
).
22.
H.
Zhou
,
A.
Midha
,
G.
Mills
,
S.
Thoms
,
S.
Murad
, and
J.
Weaver
, “
Generic scanned-probe microscope sensors by combined micromachining and electron-beam lithography
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom.
16
,
54
(
1998
).
23.
A.
Majumdar
,
J.
Carrejo
, and
J.
Lai
, “
Thermal imaging using the atomic force microscope
,”
Appl. Phys. Lett.
62
,
2501
(
1993
).
24.
L.
Shi
,
O.
Kwon
,
A. C.
Miner
, and
A.
Majumdar
, “
Design and batch fabrication of probes for sub-100 nm scanning thermal microscopy
,”
J. Microelectromech. Syst.
10
,
370
(
2001
).
25.
K.
Kim
,
W.
Jeong
,
W.
Lee
, and
P.
Reddy
, “
Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry
,”
ACS Nano
6
,
4248
(
2012
).
26.
T. P.
Nguyen
,
L.
Thiery
,
S.
Euphrasie
,
S.
Gomes
,
B.
Hay
, and
P.
Vairac
, “
Calibration of thermocouple-based scanning thermal microscope in active mode (2ω method)
,”
Rev. Sci. Instrum.
90
,
114901
(
2019
).
27.
R. J.
Pylkki
,
P. J. M.
Patrick J Moyer
, and
P. E. W.
Paul E West
, “
Scanning near-field optical microscopy and scanning thermal microscopy
,”
Jpn. J. Appl. Phys.
33
,
3785
(
1994
).
28.
S.
Lefèvre
and
S.
Volz
, “
3ω-scanning thermal microscope
,”
Rev. Sci. Instrum.
76
,
033701
(
2005
).
29.
P.
Janus
,
A.
Sierakowski
,
M.
Rudek
,
P.
Kunicki
,
A.
Dzierka
,
P.
Biczysko
, and
T.
Gotszalk
, “
Thermal nanometrology using piezoresistive SThM probes with metallic tips
,”
Ultramicroscopy
193
,
104
(
2018
).
30.
J.
Bodzenta
,
A.
Kaźmierczak-Bałata
, and
K.
Harris
, “
Quantitative thermal measurement by the use of scanning thermal microscope and resistive thermal probes
,”
J. Appl. Phys.
127
,
031103
(
2020
).
31.
G.
Pernot
,
A.
Metjari
,
H.
Chaynes
,
M.
Weber
,
M.
Isaiev
, and
D.
Lacroix
, “
Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment
,”
J. Appl. Phys.
129
,
055105
(
2021
).
32.
O.
Nakabeppu
,
M.
Chandrachood
,
Y.
Wu
,
J.
Lai
, and
A.
Majumdar
, “
Scanning thermal imaging microscopy using composite cantilever probes
,”
Appl. Phys. Lett.
66
,
694
(
1995
).
33.
B.
Samson
,
L.
Aigouy
,
P.
Löw
,
C.
Bergaud
,
B.
Kim
, and
M.
Mortier
, “
Ac thermal imaging of nanoheaters using a scanning fluorescent probe
,”
Appl. Phys. Lett.
92
,
023101
(
2008
).
34.
K.
Hatakeyama
,
E.
Sarajlic
,
M. H.
Siekman
,
L.
Jalabert
,
H.
Fujita
,
N.
Tas
, and
L.
Abelmann
, “
Wafer-scale fabrication of scanning thermal probes with integrated metal nanowire resistive elements for sensing and heating
,” in
International Conference on Micro Electro Mechanical Systems
(
IEEE
,
2014
), p.
1111
.
35.
P. S.
Dobson
,
J. M.
Weaver
, and
G.
Mills
, “
New methods for calibrated scanning thermal microscopy (SThM)
,” in
Proceedings of IEEE Sensors
(
IEEE
,
2007
), p.
708
.
36.
E.
Puyoo
,
S.
Grauby
,
J.-M.
Rampnoux
,
E.
Rouvière
, and
S.
Dilhaire
, “
Thermal exchange radius measurement: Application to nanowire thermal imaging
,”
Rev. Sci. Instrum.
81
,
073701
(
2010
).
37.
I.
Rangelow
,
T.
Gotszalk
,
P.
Grabiec
,
K.
Edinger
, and
N.
Abedinov
, “
Thermal nano-probe
,”
Microelectron. Eng.
57-58
,
737
(
2001
).
38.
S.
Lefevre
,
J.-B.
Saulnier
,
C.
Fuentes
, and
S.
Volz
, “
Probe calibration of the scanning thermal microscope in the ac mode
,”
Superlattices Microstruct.
35
,
283
(
2004
).
39.
B. A.
Nelson
and
W.
King
, “
Measuring material softening with nanoscale spatial resolution using heated silicon probes
,”
Rev. Sci. Instrum.
78
,
023702
(
2007
).
40.
R.
Swami
,
G.
Julie
,
D.
Singhal
,
J.
Paterson
,
J.
Maire
,
S.
Le-Denmat
,
J. F.
Motte
,
S.
Gomes
, and
O.
Bourgeois
, “
Electron beam lithography on non-planar, suspended, 3d AFM cantilever for nanoscale thermal probing
,”
Nano Futures
6
,
025005
(
2022
).
41.
M.
Chirtoc
,
J.
Gibkes
,
R.
Wernhardt
,
J.
Pelzl
, and
A.
Wieck
, “
Temperature-dependent quantitative 3ω scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition
,”
Rev. Sci. Instrum.
79
,
093703
(
2008
).
42.
J.
Bodzenta
,
J.
Juszczyk
,
A.
Kaźmierczak-Bałata
,
P.
Firek
,
A.
Fleming
, and
M.
Chirtoc
, “
Quantitative thermal microscopy measurement with thermal probe driven by dc+ ac current
,”
Int. J. Thermophys.
37
,
73
(
2016
).
43.
A.
Assy
and
S.
Gomes
, “
Heat transfer at nanoscale contacts investigated with scanning thermal microscopy
,”
Appl. Phys. Lett.
107
,
043105
(
2015
).
44.
A.
Assy
and
S.
Gomes
, “
Temperature-dependent capillary forces at nano-contacts for estimating the heat conduction through a water meniscus
,”
Nanotechnology
26
,
355401
(
2015
).
45.
B.
Gotsmann
and
M.
Lantz
, “
Quantized thermal transport across contacts of rough surfaces
,”
Nat. Mater.
12
,
59
(
2013
).
46.
E.
Guen
,
P.-O.
Chapuis
,
N. J.
Kaur
,
P.
Klapetek
, and
S.
Gomes
, “
Impact of roughness on heat conduction involving nanocontacts
,”
Appl. Phys. Lett.
119
,
161602
(
2021
).
47.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,”
Rev. Sci. Instrum.
61
,
802
(
1990
).
48.
S.
Sandell
,
E.
Chávez-Ángel
,
A.
El Sachat
,
J.
He
,
C. M.
Sotomayor Torres
, and
J.
Maire
, “
Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures
,”
J. Appl. Phys.
128
,
131101
(
2020
).
49.
O.
Bourgeois
,
E.
André
,
C.
Macovei
, and
J.
Chaussy
, “
Liquid nitrogen to room-temperature thermometry using niobium nitride thin films
,”
Rev. Sci. Instrum.
77
,
126108
(
2006
).
50.
T.
Nguyen
,
A.
Tavakoli
,
S.
Triqueneaux
,
R.
Swami
,
A.
Ruhtinas
,
J.
Gradel
,
P.
Garcia-Campos
,
K.
Hasselbach
,
A.
Frydman
,
B.
Piot
et al, “
Niobium nitride thin films for very low temperature resistive thermometry
,”
J. Low Temp. Phys.
197
,
348
(
2019
).
51.
H.
Ftouni
,
C.
Blanc
,
D.
Tainoff
,
A. D.
Fefferman
,
M.
Defoort
,
K. J.
Lulla
,
J.
Richard
,
E.
Collin
, and
O.
Bourgeois
, “
Thermal conductivity of silicon nitride membranes is not sensitive to stress
,”
Phys. Rev. B
92
,
125439
(
2015
).
52.
J.
Heron
,
T.
Fournier
,
N.
Mingo
, and
O.
Bourgeois
, “
Mesoscopic size effects on the thermal conductance of silicon nanowire
,”
Nano Lett.
9
,
1861
(
2009
).
53.
G. B. M.
Fiege
,
A.
Altes
,
R.
Heiderhoff
, and
L. J.
Balk
, “
Quantitative thermal conductivity measurements with nanometre resolution
,”
J. Phys. D: Appl. Phys.
32
,
L13
(
1999
).
54.
A.
Sikora
,
H.
Ftouni
,
J.
Richard
,
C.
Hebert
,
D.
Eon
,
F.
Omnes
, and
O.
Bourgeois
, “
Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method
,”
Rev. Sci. Instrum.
83
,
054902
(
2012
).
55.
A.
Sikora
,
H.
Ftouni
,
J.
Richard
,
C.
Hebert
,
D.
Eon
,
F.
Omnes
, and
O.
Bourgeois
, “
Erratum: “Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method” [Rev. Sci. Instrum. 83, 054902 (2012)]
,”
Rev. Sci. Instrum.
84
,
029901
(
2013
).
56.
A.
Tavakoli
,
K. J.
Lulla
,
T.
Puurtinen
,
I.
Maasilta
,
E.
Collin
,
L.
Saminadayar
, and
O.
Bourgeois
, “
Specific heat of thin phonon cavities at low temperature: Very high values revealed by zeptojoule calorimetry
,”
Phys. Rev. B
105
,
224313
(
2022
).
57.
M.
Yovanovich
and
E.
Marotta
, “
Thermal spreading and contact resistances
,”
in Heat Transfer Han
dbook, edited by
A.
Bejan
and
A. D.
Kraus
(
Wiley
,
2003
),
Chap. IV
, p.
261
.
58.
R. S.
Prasher
and
P. E.
Phelan
, “
Microscopic and macroscopic thermal contact resistances of pressed mechanical contacts
,”
J. Appl. Phys.
100
,
063538
(
2006
).
59.
G.
Wexler
, “
The size effect and the non-local Boltzmann transport equation in orifice and disk geometry
,”
Proc. Phys. Soc.
89
,
927
(
1966
).
60.
B.
Nikolic
and
P.
Allen
, “
Electron transport through a circular constriction
,”
Phys. Rev. B
60
,
3963
(
1999
).
61.
Y.
Sharvin
, “
A possible method for studying Fermi surfaces
,”
J. Exp. Theor. Phys. (U.S.S.R.)
48
,
984
(
1965
).
62.
J.
Paterson
, “
Experimental investigation of heat transport in nanomaterials using electro-thermal methods
,”
Ph.D. thesis (Université Grenoble Alpes, 2020
).
63.
J.
Paterson
,
D.
Singhal
,
D.
Tainoff
,
J.
Richard
, and
O.
Bourgeois
, “
Thermal conductivity and thermal boundary resistance of amorphous Al2O3 thin films on germanium and sapphire
,”
J. Appl. Phys.
127
,
245105
(
2020
).
64.
K. M.
Hoogeboom-Pot
,
J. N.
Hernandez-Charpak
,
X.
Gu
,
T. D.
Frazer
,
E. H.
Anderson
,
W.
Chao
,
R. W.
Falcone
,
R.
Yang
,
M. M.
Murnane
,
H. C.
Kapteyn
, and
D.
Nardi
, “
A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
4846
(
2015
).
65.
D.
Alikin
,
K.
Zakharchuk
,
W.
Xie
,
K.
Romanyuk
,
M. J.
Pereira
,
B. I.
Arias-Serrano
,
A.
Weidenkaff
,
A.
Kholkin
,
A. V.
Kovalevsky
, and
A.
Tselev
, “
Quantitative characterization of local thermal properties in thermoelectric ceramics using “jumping-mode” scanning thermal microscopy
,”
Small Methods
7
,
14
(
2023
).
66.
S.
Gonzalez-Munoz
,
K.
Agarwal
,
E. G.
Castanon
,
Z. R.
Kudrynskyi
,
Z. D.
Kovalyuk
,
J.
Spiece
,
O.
Kazakova
,
A.
Patane
, and
O. V.
Kolosov
, “
Direct measurements of anisotropic thermal transport in γ-InSe nanolayers via cross-sectional scanning thermal microscopy
,”
Adv. Mater. Interfaces
10
,
2300081
(
2023
).
67.
Z.
Umatova
,
Y.
Zhang
,
R.
Rajkumar
,
P. S.
Dobson
, and
J. M. R.
Weaver
, “
Quantification of atomic force microscopy tip and sample thermal contact
,”
Rev. Sci. Instrum.
90
,
095003
(
2019
).
68.
Y.
Zhang
,
P. S.
Dobson
, and
J. M. R.
Weaver
, “
High temperature imaging using a thermally compensated cantilever resistive probe for scanning thermal microscopy
,”
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
30
,
010601
(
2012
).

Supplementary Material

You do not currently have access to this content.