Correlation-based detection techniques are widely used in the weak periodic signal detection field. Traditionally, they are based on extracting the correlation of a weak signal from noise. Considering the impact of a weak signal on the randomness of background noise, this article takes the opposite approach and proposes a weak signal detection technique based on the Durbin–Watson (DW) test and one-bit sampling, detecting the weak signal due to the extent to which the randomness of noise is affected. The randomness of noise is analyzed through the DW test, which is a method for detecting the randomness of data sequences through first-order autocorrelation. One-bit sampling is adopted to reduce the complexity of the sampling circuit and data processing algorithm. The effectiveness of the DW test in the situation of one-bit sampling is demonstrated through simulation and analysis. Simulation results show that the proposed technique is capable of detecting weak sinusoidal and square-wave signals with a signal-to-noise ratio (SNR) above −30 dB, and the frequency or SNR of a weak signal can be further estimated based on mutual constraints. The measured results confirm the capability. In addition, the factors of coherent sampling, noise bandwidth, and comparator threshold that influence the performance of the proposed technique are simulated and discussed in detail.

1.
J.
Wang
,
L.
Yang
,
L.
Gao
, and
Q.
Miao
, “
Current progress on weak signal detection
,” in
2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)
(
IEEE
,
2013
), pp.
1812
1818
.
2.
J.
Hu
,
Z.
Shen
,
S.
Liu
, and
Q.
An
, “
A field programmable gate array based high speed real-time weak periodic signal detection technique
,”
Rev. Sci. Instrum.
92
,
024703
(
2021
).
3.
R.
Wang
,
L.
Chen
,
Y.
Zhao
, and
G.
Jin
, “
A high signal-to-noise ratio balanced detector system for 2 μm coherent wind lidar
,”
Rev. Sci. Instrum.
91
,
073101
(
2020
).
4.
G.
Duan
,
Y.
Wang
,
Y.
Zhang
,
S.
Wu
, and
L.
Lv
, “
A network model for detecting marine floating weak targets based on multimodal data fusion of radar echoes
,”
Sensors
22
,
9163
(
2022
).
5.
M.
Zhan
,
C.
Zhao
,
K.
Qin
,
P.
Huang
,
M.
Fang
, and
C.
Zhao
, “
Subaperture keystone transform matched filtering algorithm and its application for air moving target detection in an SBEWR system
,”
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
16
,
2262
2274
(
2023
).
6.
H.
Zhang
,
Z.
Qin
,
Y.
Zhang
,
D.
Chen
,
J.
Gen
, and
H.
Qin
, “
A practical underwater information sensing system based on intermittent chaos under the background of Lévy noise
,”
EURASIP J. Wireless Commun. Networking
2022
,
41
.
7.
J.
Yu
,
Q.
Li
,
H.
Li
,
Q.
Wang
,
G.
Zhou
,
D.
He
,
S.
Xu
,
Y.
Xia
, and
Y.
Huang
, “
High-precision light spot position detection in low SNR condition based on quadrant detector
,”
Appl. Sci.
9
,
1299
(
2019
).
8.
X.
Li
,
E.
Leitinger
,
A.
Venus
, and
F.
Tufvesson
, “
Sequential detection and estimation of multipath channel parameters using belief propagation
,”
IEEE Trans. Wireless Commun.
21
,
8385
8402
(
2022
).
9.
J.
Tang
,
B.
Shi
,
Z.
Li
, and
Y.
Li
, “
Weak fault feature extraction method based on compound tri-stable stochastic resonance
,”
Chin. J. Phys.
66
,
50
59
(
2020
).
10.
Z.
Huo
,
Y.
Zhang
,
P.
Francq
,
L.
Shu
, and
J.
Huang
, “
Incipient fault diagnosis of roller bearing using optimized wavelet transform based multi-speed vibration signatures
,”
IEEE Access
5
,
19442
19456
(
2017
).
11.
T.
Han
,
L.
Ding
,
D.
Qi
,
C.
Li
,
Z.
Fu
, and
W.
Chen
, “
Compound faults diagnosis method for wind turbine mainshaft bearing with Teager and second-order stochastic resonance
,”
Measurement
202
,
111931
(
2022
).
12.
P.
Rudnick
, “
The detection of weak signals by correlation methods
,”
J. Appl. Phys.
24
,
128
131
(
1953
).
13.
O.
Sharifi-Tehrani
and
M. F.
Sabahi
, “
Eigen analysis of flipped Toeplitz covariance matrix for very low SNR sinusoidal signals detection and estimation
,”
Digital Signal Process.
129
,
103677
(
2022
).
14.
H.
Xu
,
H.
Pan
,
J.
Zheng
,
Q.
Liu
, and
J.
Tong
, “
Dynamic penalty adaptive matrix machine for the intelligent detection of unbalanced faults in roller bearing
,”
Knowledge-Based Syst.
247
,
108779
(
2022
).
15.
X.
Guo
,
H.
Li
,
Y.
Chen
, and
W.
Sun
, “
A low-computing-complexity touch signal detection method and analog front-end circuits based on cross-correlation technology for large-size touch panel
,”
Sensors
22
,
4354
(
2022
).
16.
X.
Chen
,
M.
Wei
,
K.
Chen
, and
S.
Li
, “
Research on weak signal detection of integral average digital lock-in amplifier
,”
Meas. Sci. Technol.
32
,
105905
(
2021
).
17.
M.
Saritha
,
M.
Lavanya
,
G.
Ajitha
,
M. N.
Reddy
,
P.
Annapurna
,
M.
Sreevani
,
S.
Swathi
,
S.
Sushma
, and
V.
Vijay
, “
A VLSI design of clock gated technique based ADC lock-in amplifier
,”
Int. J. Syst. Assur. Eng. Manage.
13
,
2743
2750
(
2022
).
18.
M.
Fan
,
T.
Lan
,
G.
Li
, and
L.
Ling
, “
Suppression of odd harmonic interference in a fast digital lock-in amplifier based on square wave signal
,”
IEEE Trans. Instrum. Meas.
72
,
2003208
(
2023
).
19.
L.
Zhao
,
H.
Tao
,
W.
Chen
, and
D.
Song
, “
Maneuvering target detection based on subspace subaperture joint coherent integration
,”
Remote Sens.
13
,
1948
(
2021
).
20.
L.
Lin
,
Z.
Cheng
, and
Z.
He
, “
Coherent detection and parameter estimation for ground moving target based on MLRT-IDCFT
,”
Digital Signal Process.
120
,
103259
(
2022
).
21.
S.
Liu
,
Y.
Sun
, and
Y.
Kang
, “
A novel E-exponential stochastic resonance model and weak signal detection method for steel wire rope
,”
IEEE Trans. Ind. Electron.
69
,
7428
7440
(
2021
).
22.
Z.
Qiao
,
Y.
Lei
, and
N.
Li
, “
Applications of stochastic resonance to machinery fault detection: A review and tutorial
,”
Mech. Syst. Signal Process.
122
,
502
536
(
2019
).
23.
M.
Li
,
P.
Shi
,
W.
Zhang
, and
D.
Han
, “
Stochastic resonance in a high-dimensional space coupled bistable system and its application
,”
Appl. Math. Modell.
113
,
160
174
(
2023
).
24.
G.
Li
,
J.
Cui
, and
H.
Yang
, “
A new detecting method for underwater acoustic weak signal based on differential double coupling oscillator
,”
IEEE Access
9
,
18842
18854
(
2021
).
25.
G.
Wang
,
L.
Yang
,
X.
Zhan
,
A.
Li
, and
Y.
Jia
, “
Chaotic resonance in Izhikevich neural network motifs under electromagnetic induction
,”
Nonlinear Dyn.
107
,
3945
3962
(
2022
).
26.
S.
Cao
,
H.
Li
,
K.
Zhang
,
C.
Yang
,
F.
Sun
, and
Z.
Wang
, “
An improved chaotic recognition method for weak signal frequency and its application to fault diagnosis of planetary gearboxes
,”
Meas. Sci. Technol.
33
,
105113
(
2022
).
27.
J.
Gu
,
Y.
Peng
,
H.
Lu
,
X.
Chang
, and
G.
Chen
, “
A novel fault diagnosis method of rotating machinery via VMD, CWT and improved CNN
,”
Measurement
200
,
111635
(
2022
).
28.
S.
Jiao
,
R.
Gao
,
D.
Zhang
, and
C.
Wang
, “
A novel method for UWB weak signal detection based on stochastic resonance and wavelet transform
,”
Chin. J. Phys.
76
,
79
93
(
2022
).
29.
J.
Wang
,
C.
Ye
,
M.
Jiang
,
F.
Zhang
, and
Q.
Sui
, “
SWT-KELM-based rolling bearing fault diagnosis method under noise conditions with different SNRs
,”
Meas. Sci. Technol.
34
,
015007
(
2022
).
30.
R.
Benzi
,
A.
Sutera
, and
A.
Vulpiani
, “
The mechanism of stochastic resonance
,”
J. Phys. A: Math. Gen.
14
,
L453
(
1981
).
31.
R.
Benzi
,
G.
Parisi
,
A.
Sutera
, and
A.
Vulpiani
, “
Stochastic resonance in climatic change
,”
Tellus B
34
,
10
16
(
2012
).
32.
R.
Benzi
,
G.
Parisi
,
A.
Sutera
, and
A.
Vulpiani
, “
A theory of stochastic resonance in climatic change
,”
SIAM J. Appl. Math.
43
,
565
578
(
1983
).
33.
S.
Lu
,
Q.
He
, and
J.
Wang
, “
A review of stochastic resonance in rotating machine fault detection
,”
Mech. Syst. Signal Process.
116
,
230
260
(
2019
).
34.
Q.
Wang
,
Y.
Yang
, and
X.
Zhang
, “
Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise
,”
Chaos, Solitons Fractals
137
,
109832
(
2020
).
35.
J.
Durbin
and
G. S.
Watson
, “
Testing for serial correlation in least squares regression. I
,”
Biometrika
37
,
409
428
(
1950
).
36.
J.
Durbin
and
G. S.
Watson
, “
Testing for serial correlation in least squares regression. II
,”
Biometrika
38
,
159
178
(
1951
).
37.
S. S.
Uyanto
, “
Power comparisons of five most commonly used autocorrelation tests
,”
Pak. J. Stat. Oper. Res.
16
,
119
130
(
2020
).
38.
T. S.
Breusch
, “
Testing for autocorrelation in dynamic linear models
,”
Aust. Econ. Pap.
17
,
334
355
(
1978
).
39.
L. G.
Godfrey
, “
Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables
,”
Econometrica
46
,
1293
1301
(
1978
).
40.
H.
Hassani
and
M. R.
Yeganegi
, “
Selecting optimal lag order in Ljung–Box test
,”
Physica A
541
,
123700
(
2020
).
41.
S.
Sharma
,
V.
Bhatia
,
K.
Deka
, and
A.
Gupta
, “
Sparsity-based monobit UWB receiver under impulse noise environments
,”
IEEE Wireless Commun. Lett.
8
,
849
852
(
2019
).
42.
Y.
Chen
, “
Spatial autocorrelation approaches to testing residuals from least squares regression
,”
PLoS One
11
,
e0146865
(
2016
).
43.
Texas Instruments, Inc.
, TLV3604DCKR: High-Speed RRI comparator with LVDS Outputs, https://www.ti.com/lit/ds/symlink/tlv3604.pdf,
2024
.
44.
AMD XLINX, Inc.
, XC7K325T-2FFG900I: DC and AC Switching Characteristics, https://docs.xilinx.com/v/u/en-US/7-series-product-selection-guide,
2024
.
You do not currently have access to this content.