In situ studies under severe plastic deformation at high pressures, employing shear diamond anvil cells, have recently gained much interest in the high-pressure community owing to their potential applications in material processing methods, mechanochemistry, and geophysics. These studies, combined with multi-scale computational simulations, provide important insights into the transient hierarchical microstructural evolution, structural phase transitions, and orientation relationship between parent and daughter phases and help establish the kinetics of strain-induced phase transitions under severe plastic deformation. The existing SDACs are mostly used in axial x-ray diffraction geometry due to geometrical constraints providing less reliable information about stress states and texture. Their asymmetric design also poses serious limitations to high-pressure shear studies on single crystals. To overcome these limitations, a new compact symmetric shear diamond anvil cell has been designed and developed for in situ high-pressure torsion studies on materials. The symmetric angular opening and short working distance in this new design help obtain a more reliable crystallographic orientation distribution function and lattice strain states up to a large Q range. Here, we present the advantages of the symmetric design with a few demonstrative studies.

1.
K.
Edalati
et al, “
Nanomaterials by severe plastic deformation: Review of historical developments and recent advances
,”
Mater. Res. Lett.
10
(
4
),
163
256
(
2022
).
2.
M.
Durand-Charre
,
La Microstructure des aciers et desfontes [Microstructure of Steels and Cast Irons]
(
Gense et Interpretation Ed. SIRPE
,
Paris
,
2003
).
3.
J.
Lapérouse
, “
Metallurgy: Early metallurgy in mesopotamia
,” in
Encyclopaedia of the History of Science, Technology, and Medicine in Nonwestern Cultures
, 2nd ed., edited by
H.
Selin
(
Springer-Verlag
,
Berlin
,
2008
), p.
1632
.
4.
M.
Durand-Charre
,
Damascus Andpattern-Weldedsteels, Forging Blades Since the Iron Age
(
LesUlis: EDP Sciences
,
2014
).
5.
R.
Tewari
, “
The origins of iron working in India: New evidence from the central Ganga plain and the Eastern Vindhyas
,”
Antiquity
77
(
297
),
536
544
(
2003
).
6.
R. Z.
Valiev
,
Y.
Estrin
,
Z.
Horita
et al, “
Producing bulk ultrafine-grained materials by severe plastic deformation
,”
JOM
58
,
33
39
(
2006
).
7.
V. M.
Segal
, “
Review: Modes and processes of severe plastic deformation (SPD)
,”
Materials
11
,
1175
(
2018
).
8.
P. W.
Bridgman
, “
Effects of high shearing stress combined with high hydrostatic pressure
,”
Phys. Rev.
48
,
825
847
(
1935
).
9.
P. W.
Bridgman
,
Studies in Large Plastic Flow and Fracture
(
McGraw-Hill
,
New York, NY
,
1952
).
10.
K.
Edalati
and
Z.
Horita
, “
A review on high-pressure torsion (HPT) from 1935 to 1988
,”
Mater. Sci. Eng.: A
652
,
325
352
(
2016
).
11.
A. P.
Zhilyaev
and
T. G.
Langdon
, “
Using high-pressure torsion for metal processing: Fundamentals and applications
,”
Prog. Mater. Sci.
53
,
893
979
(
2008
).
12.
K.
Edalati
,
D. J.
Lee
,
T.
Nagaoka
,
M.
Arita
,
H. S.
Kim
,
Z.
Horita
, and
R.
Pippan
, “
Real hydrostatic pressure in high-pressure torsion measured by bismuth phase transformations and FEM simulations
,”
Mater. Trans.
57
(
4
),
533
538
(
2016
).
13.
C. E.
Weir
,
E. R.
Lippincott
,
A.
Van Valkenburg
, and
E. N.
Bunting
, “
Infrared studies in the 1- to 15-micron region to 30,000 atmospheres
,”
J. Res. Nat. Bur. Stand. Sect. A
63
,
55
62
(
1959
).
14.
V. V.
Aksenenkov
,
V. D.
Blank
,
Y. S.
Konyayev
et al, “
Investigation of phase equilibria in a diamond chamber for shear at pressures up to 25.0 GPa
,”
Phys. Met. Metallogr.
57
,
159
162
(
1984
).
15.
V. D.
Blank
,
Y. S.
Konyaev
,
A. I.
Kuznetsov
et al, “
Diamond chamber for examining the effects of shear deformation on the structure and properties of solids at pressures up to 43 GPa
,”
Instrum. Exp. Tech.
27
,
1240
1242
(
1984
).
16.
V. I.
Levitas
,
Y.
Ma
,
J.
Hashemi
,
M.
Holtz
, and
N.
Guven
.
Strain-induced disorder, phase transformations, and transformation-induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: In situ x-ray diffraction study and modeling
.
J. Chem. Phys.
125
,
044507
(
2006
).
17.
V. D.
Blank
,
M. Y.
Popov
, and
B. A.
Kulnitskiy
, “
The effect of severe plastic deformations on phase transitions and structure of solids
,”
Mater. Trans.
60
,
1500
1505
(
2019
).
18.
J. H.
Chen
,
L.
Li
,
D.
Weidner
, and
M.
Vaughan
, “
Deformation experiments using synchrotron X-rays: In situ stress and strain measurements at high pressure and temperature
,”
Phys. Earth Planet. Inter.
143–144
,
347
356
(
2004
).
19.
N. V.
Novikov
,
S. B.
Polotnyak
,
L. K.
Shvedov
, and
V. I.
Levitas
, “
Regularities on phase transformations and plastic straining of materials in compression and shear on diamond anvils: Experiments and theory
,”
J. Superhard Mat.
21
(
3
),
36
48
(
1999
).
20.
Y. B.
Wang
,
W. B.
Durham
,
I. C.
Getting
, and
D. J.
Weidner
, “
The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa
,”
Rev. Sci. Instrum.
74
,
3002
3011
(
2003
).
21.
S. A.
Hunt
,
D. J.
Weidner
,
R. J.
McCormack
,
M. L.
Whitaker
,
E.
Bailey
,
L.
Li
,
M. T.
Vaughan
, and
D. P.
Dobson
, “
Deformation T-Cup: A new multi-anvil apparatus for controlled strain-rate deformation experiments at pressures above 18 GPa
,”
Rev. Sci. Instrum.
85
,
085103
(
2014
).
22.
N. B.
Novikov
,
L. K.
Shvedov
,
Y. N.
Krivosheya
, and
V. I.
Levitas
, “
New automated shear cell with diamond anvils for in situ studies of materials using X-ray diffraction
,”
J. Superhard Mater.
37
(
1
),
1
7
(
2015
).
23.
R.
Nomura
,
S.
Azuma
,
K.
Uesugi
,
Y.
Nakashima
,
T.
Irifune
,
T.
Shinmei
,
S.
Kakizawa
,
Y.
Kojima
, and
H.
Kadobayashi
, “
High-pressure rotational deformation apparatus to 135 GPa
,”
Rev. Sci. Instrum.
88
,
044501
(
2017
).
24.
Y.
Ma
,
E.
Selvi
,
V. I.
Levitas
, and
J.
Hashemi
, “
Effect of shear strain on the α − ɛ phase transition of iron: A new approach in the rotational diamond anvil cell
,”
J. Phys.: Condens. Matter
18
,
S1075
S1082
(
2006
).
25.
C.
Ji
,
V. I.
Levitas
,
H.
Zhu
,
J.
Chaudhuri
,
A.
Marathe
, and
Y.
Ma
, “
Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
19108
(
2012
).
26.
Y.
Gao
,
Y.
Ma
,
Q.
An
,
V.
Levitas
,
Y.
Zhang
,
B.
Feng
,
J.
Chaudhuri
, and
W. A.
Goddard
, “
Shear driven formation of nano-diamonds at sub-gigapascals and 300 K
,”
Carbon
146
,
364
368
(
2019
).
27.
Y.
Nishihara
,
D.
Tinker
,
T.
Kawazoe
,
Y.
Xu
,
Z.
Jing
,
K. N.
Matsukage
, and
S.-i.
Karato
, “
Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational Drickamer apparatus (RDA)
,”
Phys. Earth Planet. Inter.
170
,
156
169
(
2008
).
28.
T.
Kawazoe
,
T.
Ohuchi
,
N.
Nishiyama
,
Y.
Nishihara
, and
T.
Irifune
, “
Preliminary deformation experiment of ringwoodite at 20 GPa and 1700 K using a D-DIA apparatus
,”
J. Earth Sci.
21
,
517
522
(
2010
).
29.
L.
Li
,
D.
Weidner
,
P.
Raterron
,
J.
Chen
,
M.
Vaughan
,
S.
Mei
, and
B.
Durham
, “
Deformation of olivine at mantle pressure using the D-DIA
,”
Eur. J. Mineral.
18
,
7
19
(
2006
).
30.
W. B.
Durham
,
S.
Mei
,
D. L.
Kohlstedt
,
L.
Wang
, and
N. A.
Dixon
, “
New measurements of activation volume in olivine under anhydrous conditions
,”
Phys. Earth Planet. Inter.
172
,
67
73
(
2009
).
31.
H. K.
Mao
,
B.
Chen
,
J.
Chen
,
K.
Li
,
J.-F.
Lin
,
W.
Yang
, and
H.
Zheng
, “
Recent advances in high-pressure science and technology
,”
Matter Radiat. Extremes
1
,
59
(
2016
).
32.
K.
Edalati
,
I.
Taniguchi
,
R.
Floriano
, and
A. D.
Luchessi
, “
Glycine amino acid transformation under impacts by small solar system bodies, simulated via high-pressure torsion method
,”
Sci. Rep.
12
,
5677
(
2022
).
33.
V. I.
Levitas
, “
Continuum mechanical fundamentals of mechanochemistry
,”
High Pressure Surface Science and Engineering
(
Institute of Physics
,
Bristol
,
2004
), Vol.
159–292
.
34.
V. I.
Levitas
, “
High-pressure mechanochemistry: Conceptual multiscale theory and interpretation of experiments
,”
Phys. Rev. B
70
(
18
),
184118
(
2004
).
35.
V. I.
Levitas
, “
Phase transformations, fracture, and other structural changes in inelastic materials
,”
Int. J. Plast.
140
,
102914
(
2021
).
36.
V. I.
Levitas
, “
Recent in situ experimental and theoretical advances in severe plastic deformations, strain-induced phase transformations, and microstructure evolution under high pressure
,”
Mater. Trans.
64
(
8
),
1866
1878
(
2023
).
37.
F.
Lin
,
V. I.
Levitas
,
K. K.
Pandey
,
S.
Yesudhas
, and
C.
Park
, “
In-situ study of rules of nanostructure evolution, severe plastic deformations, and friction under high pressure
,”
Mater. Res. Lett.
11
(
9
),
757
763
(
2023
).
38.
V. I.
Levitas
, “
High-pressure phase transformations under severe plastic deformation by torsion in rotational anvils
,”
Mater. Trans.
60
(
7
),
1294
1301
(
2019
).
39.
K. K.
Pandey
and
V. I.
Levitas
, “
In situ quantitative study of plastic strain-induced phase transformations under high pressure: Example for ultra-pure Zr
,”
Acta Mater.
196
,
338
346
(
2020
).
40.
G. L.
Kinsland
and
W. A.
Bassett
, “
Modification of the diamond cell for measuring strain and the strength of materials at pressures up to 300 kilobar
,”
Rev. Sci. Instrum.
47
,
130
133
(
1976
).
41.
R. J.
Hemley
,
H. K.
Mao
,
G.
Shen
,
J.
Badro
,
P.
Gillet
,
M.
Hanfland
, and
D.
Häusermann
,
Science
276
,
1242
1245
(
1997
).
42.
A. K.
Singh
,
H. K.
Mao
,
J.
Shu
, and
R. J.
Hemley
,
Phys. Rev. Lett.
80
,
2157
2160
(
1998
).
43.
V. I.
Levitas
,
A.
Dhar
, and
K. K.
Pandey
, “
Tensorial stress-plastic strain fields in α − ω Zr mixture, transformation kinetics, and friction in diamond-anvil cell
,”
Nat. Commun.
14
,
5955
(
2023
).
45.
R.
Boehler
and
K.
De Hantsetters
, “
New anvil designs in diamond-cells
,”
High Pressure Res.
24
(
3
),
391
396
(
2004
).
46.
H. K.
Mao
,
J.
Xu
, and
P. M.
Bell
, “
Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
,”
J. Geophys. Res.
91
,
4673
, (
1986
).
47.
Y.
Akahama
and
H.
Kawamura
, “
Pressure calibration of diamond anvil Raman gauge to 310 GPa
,”
J. Appl. Phys.
100
,
043516
(
2006
).
48.
K. K.
Pandey
and
V. I.
Levitas
, “
Displacement field measurements in traditional and rotational diamond anvil cells
,”
J. Appl. Phys.
129
,
115901
(
2021
).
49.
H. M.
Rietveld
, “
A profile refinement method for nuclear and magnetic structures
,”
J. Appl. Cryst.
2
,
65
71
(
1969
).
50.
M/s. Somdev Instruments Pvt. Ltd., Jaipur (India), Email: [email protected].
51.
K. K.
Pandey
,
H. K.
Poswal
,
A. K.
Mishra
et al, “
Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron source
,”
Pramana
80
,
607
619
(
2013
).
52.
L.
Lutterotti Maud
, “
A Rietveld analysis program designed for the internet and experiment integration
,”
Acta Cryst. Sect. A
56
,
s54
(
2000
).
53.
V. I.
Levitas
,
M.
Kamrani
, and
B.
Feng
, “
Tensorial stress–strain fields and large elastoplasticity as well as friction in diamond anvil cell up to 400 GPa
,”
NPJ Comput. Mater.
5
,
94
(
2019
).
You do not currently have access to this content.