Non-equilibrium plasmas at atmospheric pressure are often characterized by optical emission spectroscopy. Despite the simplicity of recording optical emission spectra in plasmas, the determination of spatially resolved plasma properties (e.g., electron temperature) in an efficient way is very challenging. In this study, spatially resolved optical images of a microwave argon plasma jet expanding into the ambient air are recorded over a wide range of wavelengths using a hyperspectral imaging system based on a tunable Bragg-grating imager coupled to a scientific complementary metal–oxide–semiconductor camera. The system’s working principle is detailed, along with the necessary post-processing steps. Further analysis of the spatial–spectral data, including the Abel transform used to determine 2D radially resolved spatial mappings, is also presented. Overall, the proposed approach provides unprecedented cartographies of key plasma parameters, such as argon and oxygen line emission intensities, Ar metastable number densities, and argon excitation temperatures. Considering that all these plasma parameters are obtained from measurements performed in a reasonable time, Bragg-grating-based hyperspectral imaging constitutes an advantageous plasma diagnostic technique for detailed analysis of microwave plasma jets used in several applications.

1.
H.
Zhang
,
D.
Ma
,
R.
Qiu
,
Y.
Tang
, and
C.
Du
, “
Non-thermal plasma technology for organic contaminated soil remediation: A review
,”
Chem. Eng. J.
313
,
157
170
(
2017
).
2.
B.
Jiang
et al, “
Review on electrical discharge plasma technology for wastewater remediation
,”
Chem. Eng. J.
236
,
348
368
(
2014
).
3.
S.
Shao
et al, “
A review on the application of non-thermal plasma (NTP) in the conversion of biomass: Catalyst preparation, thermal utilization and catalyst regeneration
,”
Fuel
330
,
125420
(
2022
).
4.
C.
Melero
et al, “
Scalable graphene production from ethanol decomposition by microwave argon plasma torch
,”
Plasma Phys. Controlled Fusion
60
(
1
),
014009
(
2017
).
5.
A.
Kilicaslan
et al, “
Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders
,”
J. Appl. Phys.
115
(
11
),
113301
(
2014
).
6.
R.
Rincón
,
M.
Jiménez
,
J.
Muñoz
,
M.
Sáez
, and
M. D.
Calzada
, “
Hydrogen production from ethanol decomposition by two microwave atmospheric pressure plasma sources: Surfatron and TIAGO torch
,”
Plasma Chem. Plasma Process.
34
(
1
),
145
157
(
2014
).
7.
M.
Jiménez
,
R.
Rincón
,
A.
Marinas
, and
M. D.
Calzada
, “
Hydrogen production from ethanol decomposition by a microwave plasma: Influence of the plasma gas flow
,”
Int. J. Hydrogen Energy
38
(
21
),
8708
8719
(
2013
).
8.
T.
von Woedtke
,
S.
Reuter
,
K.
Masur
, and
K.-D.
Weltmann
, “
Plasmas for medicine
,”
Phys. Rep.
530
(
4
),
291
320
(
2013
).
9.
P.
Attri
,
K.
Ishikawa
,
T.
Okumura
,
K.
Koga
, and
M.
Shiratani
, “
Plasma agriculture from laboratory to farm: A review
,”
Processes
8
(
8
),
1002
(
2020
).
10.
F. P.
Sainct
,
A.
Durocher-Jean
,
R. K.
Gangwar
,
N. Y.
Mendoza Gonzalez
,
S.
Coulombe
, and
L.
Stafford
, “
Spatially-resolved spectroscopic diagnostics of a miniature RF atmospheric pressure plasma jet in argon open to ambient air
,”
Plasma
3
(
2
),
38
53
(
2020
).
11.
S. B.
Olenici-Craciunescu
,
S.
Müller
,
A.
Michels
,
V.
Horvatic
,
C.
Vadla
, and
J.
Franzke
, “
Spatially resolved spectroscopic measurements of a dielectric barrier discharge plasma jet applicable for soft ionization
,”
Spectrochim. Acta, Part B
66
(
3-4
),
268
273
(
2011
).
12.
S.
Ries
et al, “
Spatially resolved characterization of a dc magnetron plasma using optical emission spectroscopy
,”
Plasma Sources Sci. Technol.
27
(
9
),
094001
(
2018
).
13.
M. C.
Jacofsky
et al, “
Spatially resolved optical emission spectroscopy of a helium plasma jet and its effects on wound healing rate in a diabetic murine model
,”
Plasma Med.
4
(
1–4
),
177
(
2014
).
14.
L.
Potočňáková
,
J.
Hnilica
, and
V.
Kudrle
, “
Spatially resolved spectroscopy of an atmospheric pressure microwave plasma jet used for surface treatment
,”
Open Chem.
13
(
1
),
000010151520150066
(
2014
).
15.
C.
Schopp
,
N.
Britun
,
J.
Voráč
,
P.
Synek
,
R.
Snyders
, and
H.
Heuermann
, “
Thermal and optical study on the frequency dependence of an atmospheric microwave argon plasma jet
,”
IEEE Trans. Plasma Sci.
47
(
7
),
3176
3181
(
2019
).
16.
F.
Vasefi
,
N.
MacKinnon
, and
D. L.
Farkas
, “
Hyperspectral and multispectral imaging in dermatology
,” in
Imaging in Dermatology
(
Elsevier
,
2016
), pp.
187
201
.
17.
G.
Lu
and
B.
Fei
, “
Medical hyperspectral imaging: A review
,”
J. Biomed. Opt.
19
(
1
),
010901
(
2014
).
18.
D.-W.
Sun
,
Hyperspectral Imaging for Food Quality Analysis and Control
(
Elsevier
,
2010
).
19.
M. J.
Khan
,
H. S.
Khan
,
A.
Yousaf
,
K.
Khurshid
, and
A.
Abbas
, “
Modern trends in hyperspectral image analysis: A review
,”
IEEE Access
6
,
14118
14129
(
2018
).
20.
J.
Eckhard
,
T.
Eckhard
,
E. M.
Valero
,
J. L.
Nieves
, and
E. G.
Contreras
, “
Outdoor scene reflectance measurements using a Bragg-grating-based hyperspectral imager
,”
Appl. Opt.
54
(
13
),
D15
D24
(
2015
).
21.
D.
Krupnik
and
S.
Khan
, “
Close-range, ground-based hyperspectral imaging for mining applications at various scales: Review and case studies
,”
Earth-Sci. Rev.
198
,
102952
(
2019
).
22.
Photon-etc-specsheet-V-EOS-janvier-2021; accessed on November 15, 2022 (Online), available https://d12oqns8b3bfa8.cloudfront.net/photonetc/photon-etc-specsheet-V-EOS-janvier-2021.pdf?v=1610466946.
23.
P.-A.
Blanche
,
P.
Gailly
,
S.
Habraken
,
P.
Lemaire
, and
C.
Jamar
, “
Volume phase holographic gratings: Large size and high diffraction efficiency
,”
Opt. Eng.
43
(
11
),
2603
2612
(
2004
).
24.
Interp3 Interpolation for 3-D gridded data in meshgrid format; accessed on November 15, 2022 (Online), available https://www.mathworks.com/help/matlab/ref/interp3.html.
25.
B. Z.
Bentz
, “
Tomographic optical emission spectroscopy of an atmospheric pressure plasma jet and surface ionization waves on planar and structured surfaces
,”
Plasma Sources Sci. Technol.
32
(
10
),
105003
(
2023
).
26.
S.
Iseni
,
A.
Schmidt-Bleker
,
J.
Winter
,
K.-D.
Weltmann
, and
S.
Reuter
, “
Atmospheric pressure streamer follows the turbulent argon air boundary in a MHz argon plasma jet investigated by OH-tracer PLIF spectroscopy
,”
J. Phys. D Appl. Phys.
47
(
15
),
152001
(
2014
).
27.
B.
Niermann
,
R.
Reuter
,
T.
Kuschel
,
J.
Benedikt
,
M.
Böke
, and
J.
Winter
, “
Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure
,”
Plasma Sources Sci. Technol.
21
(
3
),
034002
(
2012
).
28.
F.
Labelle
,
A.
Durocher-Jean
, and
L.
Stafford
, “
On the rotational–translational equilibrium in non-thermal argon plasmas at atmospheric pressure
,”
Plasma Sources Sci. Technol.
30
(
3
),
035020
(
2021
).
29.
R.
Alvarez
,
A.
Rodero
, and
M. C.
Quintero
, “
An Abel inversion method for radially resolved measurements in the axial injection torch
,”
Spectrochim. Acta, Part B
57
(
11
),
1665
1680
(
2002
).
30.
R.
Bracewell
,
Fourier Transform and its Application
(
McGrow-Hill, Inc.
,
New York
,
1965
).
31.
G.
Pretzier
, “
A new method for numerical Abel-inversion
,”
Z. Naturforsch. A
46
(
7
),
639
641
(
1991
).
32.
C.
Killer
,
Abel inversion algorithm, MATLAB central file exchange
, accessed on December 12, 2022 (Online), available https://www.mathworks.com/matlabcentral/fileexchange/43639-abel-inversion-algorithm.
33.
A.
Durocher-Jean
,
E.
Desjardins
, and
L.
Stafford
, “
Characterization of a microwave argon plasma column at atmospheric pressure by optical emission and absorption spectroscopy coupled with collisional-radiative modelling
,”
Phys. Plasmas
26
(
6
),
063516
(
2019
).
34.
S.
Shi
,
K.
Finch
,
Y.
She
, and
G.
Gamez
, “
Development of Abel’s inversion method to extract radially resolved optical emission maps from spectral data cubes collected: Via push-broom hyperspectral imaging with sub-pixel shifting sampling
,”
J. Anal. At. Spectrom.
35
(
1
),
117
125
(
2020
).
35.
M.
Moisan
and
J.
Pelletier
, Physique des plasmas collisionnels: application aux décharges haute fréquence (Collection Grenoble sciences), EBSCO eBooks.
36.
E. C.
Martinez
,
Y.
Kabouzi
,
K.
Makasheva
, and
M.
Moisan
, “
Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction
,”
Phys. Rev. E
70
(
6
),
066405
(
2004
).
37.
M.
Snirer
,
J.
Toman
,
V.
Kudrle
, and
O.
Jašek
, “
Stable filamentary structures in atmospheric pressure microwave plasma torch
,”
Plasma Sources Sci. Technol.
30
(
9
),
095009
(
2021
).
38.
Y.
Kabouzi
,
M. D.
Calzada
,
M.
Moisan
,
K. C.
Tran
, and
C.
Trassy
, “
Radial contraction of microwave-sustained plasma columns at atmospheric pressure
,”
J. Appl. Phys.
91
(
3
),
1008
1019
(
2002
).
39.
J.
Jonkers
,
L. J. M.
Selen
,
J. A. M. v. d.
Mullen
,
E. A. H.
Timmermans
, and
D. C.
Schram
, “
Steep plasma gradients studied with spatially resolved Thomson scattering measurements
,”
Plasma Sources Sci. Technol.
6
(
4
),
533
(
1997
).
40.
R.
Rincón
,
J.
Muñoz
,
M.
Sáez
, and
M. D.
Calzada
, “
Spectroscopic characterization of atmospheric pressure argon plasmas sustained with the Torche à Injection Axiale sur guide d’ondes
,”
Spectrochim. Acta, Part B
81
,
26
35
(
2013
).
41.
A.
Ricard
,
L.
St-Onge
,
H.
Malvos
,
A.
Gicquel
,
J.
Hubert
, and
M.
Moisan
, “
Torche à plasma à excitation micro-onde: deux configurations complémentaires
,”
J. Phys. III
5
(
8
),
1269
1285
(
1995
).
42.
A.
Durocher-Jean
,
I. R.
Durán
,
S.
Asadollahi
,
G.
Laroche
, and
L.
Stafford
, “
Deposition of anti-fog coatings on glass substrates using the jet of an open-to-air microwave argon plasma at atmospheric pressure
,”
Plasma Processes Polym.
17
(
8
),
1900229
(
2020
).
43.
U.
Fantz
, “
Basics of plasma spectroscopy
,”
Plasma Sources Sci. Technol.
15
(
4
),
S137
(
2006
).
44.
NIST Atomic Spectra Database Lines Form; accessed on November 15, 2023 (Online), available https://physics.nist.gov/PhysRefData/ASD/lines_form.html.
45.
S.
Jovićević
,
M.
Ivković
, and
N.
Konjević
, “
Parametric study of an atmospheric pressure microwave-induced plasma of the mini MIP torch—II. Two-dimensional spatially resolved excitation temperature measurements
,”
Spectrochim. Acta, Part B
56
(
12
),
2419
2428
(
2001
).
46.
A.
Safi
et al, “
Determination of excitation temperature in laser-induced plasmas using columnar density Saha-Boltzmann plot
,”
J. Adv. Res.
18
,
1
7
(
2019
).
47.
T.
Belmonte
,
C.
Noël
,
T.
Gries
,
J.
Martin
, and
G.
Henrion
, “
Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas
,”
Plasma Sources Sci. Technol.
24
(
6
),
064003
(
2015
).
48.
C.
Wang
and
N.
Srivastava
, “
OH number densities and plasma jet behavior in atmospheric microwave plasma jets operating with different plasma gases (Ar, Ar/N2, and Ar/O2)
,”
Eur Phys. J. D
60
(
3
),
465
477
(
2010
).
49.
A.
Durocher-Jean
,
N.
Delnour
, and
L.
Stafford
, “
Influence of N2, O2, and H2 admixtures on the electron power balance and neutral gas heating in microwave Ar plasmas at atmospheric pressure
,”
J. Phys. D Appl. Phys.
52
(
47
),
475201
(
2019
).
50.
A.
Sáinz
,
J.
Margot
,
M. C.
García
, and
M. D.
Calzada
, “
Role of dissociative recombination in the excitation kinetics of an argon microwave plasma at atmospheric pressure
,”
J. Appl. Phys.
97
(
11
),
113305
(
2005
).
51.
J. A.
Bravo
,
R.
Rincón
,
J.
Muñoz
,
A.
Sánchez
, and
M. D.
Calzada
, “
Spectroscopic characterization of argon–nitrogen surface-wave discharges in dielectric tubes at atmospheric pressure
,”
Plasma Chem. Plasma Process.
35
(
6
),
993
1014
(
2015
).
You do not currently have access to this content.