We describe a helium source cell for use in cryogenic experiments that is hermetically sealed in situ on the cold plate of a cryostat. The source cell is filled with helium gas at room temperature and, subsequently, sealed using a cold weld crimping tool before the cryostat is closed and cooled down. At low temperatures, the helium condenses and collects in a connected experimental volume, as monitored via the frequency response of a planar superconducting resonator device sensitive to small amounts of liquid helium. This on-cryostat helium source negates the use of a filling tube between the cryogenic volumes and room temperature, thereby preventing unwanted effects such as temperature instabilities that arise from the thermomechanical motion of helium within the system. This helium source can be used in experiments investigating the properties of quantum fluids or to better thermalize quantum devices.

1.
W. F.
Vinen
,
Rep. Prog. Phys.
31
,
61
(
1968
).
2.
D.
Volhardt
and
P.
Woelfle
,
The Superfluid Phases of Helium-3
, 1st ed. (
Taylor & Francis
,
1990
).
3.
P.
Heikkinen
,
A.
Casey
,
L.
Levitin
,
X.
Rojas
,
A.
Vorontsov
,
P.
Sharma
,
N.
Zhelev
,
J.
Parpia
, and
J.
Saunders
,
Nat. Commun.
12
,
1574
(
2021
).
4.
E.
Varga
,
C.
Undershute
, and
J. P.
Davis
,
Phys. Rev. Lett.
129
,
145301
(
2022
).
5.
A. J.
Woods
,
A. M.
Donald
,
R.
Gazizulin
,
E.
Collin
, and
L.
Steinke
,
J. Appl. Phys.
133
,
024501
(
2023
).
6.
J. S.
Xia
,
E. D.
Adams
,
V.
Shvarts
,
W.
Pan
,
H. L.
Stormer
, and
D. C.
Tsui
,
Physica B
280
,
491
(
2000
).
7.
N.
Samkharadze
,
A.
Kumar
,
M. J.
Manfra
,
L. N.
Pfeiffer
,
K. W.
West
, and
G. A.
Csáthy
,
Rev. Sci. Instrum.
82
,
053902
(
2011
).
8.
A. T.
Jones
,
C. P.
Scheller
,
J. R.
Prance
,
Y. B.
Kalyoncu
,
D. M.
Zumbúhl
, and
R. P.
Haley
,
J. Low Temp. Phys.
201
,
772
(
2020
).
9.
L. V.
Levitin
,
H.
van der Vliet
,
T.
Theisen
,
S.
Dimitriadis
,
M.
Lucas
,
A. D.
Corcoles
,
J.
Nyéki
,
A. J.
Casey
,
G.
Creeth
,
I.
Farrer
,
D. A.
Ritchie
,
J. T.
Nicholls
, and
J.
Saunders
,
Nat. Commun.
13
,
667
(
2022
).
10.
N. R.
Beysengulov
,
J. R.
Lane
,
J. M.
Kitzman
,
K.
Nasyedkin
,
D. G.
Rees
, and
J.
Pollanen
,
J. Low Temp. Phys.
205
,
143
(
2021
).
11.
M.
Lucas
,
A. V.
Danilov
,
L. V.
Levitin
,
A.
Jayaraman
,
A. J.
Casey
,
L.
Faoro
,
A. Y.
Tzalenchuk
,
S. E.
Kubatkin
,
J.
Saunders
, and
S. E.
de Graaf
,
Nat. Commun.
14
,
3522
(
2023
).
12.
J. R.
Lane
,
D.
Tan
,
N. R.
Beysengulov
,
K.
Nasyedkin
,
E.
Brook
,
L.
Zhang
,
T.
Stefanski
,
H.
Byeon
,
K. W.
Murch
, and
J.
Pollanen
,
Phys. Rev. A
101
,
012336
(
2020
).
13.
D. I.
Schuster
,
A.
Fragner
,
M. I.
Dykman
,
S. A.
Lyon
, and
R. J.
Schoelkopf
,
Phys. Rev. Lett.
105
,
040503
(
2010
).
14.
G.
Koolstra
,
G.
Yang
, and
D. I.
Schuster
,
Nat. Commun.
10
,
5323
(
2019
).
15.
J.
Pollanen
,
N. R.
Beysengulov
, and
D. G.
Rees
, “
Qubit hardware for electrons on helium
,” https://patents.google.com/patent/US10892398B2/en (
2021
).
16.
F.
Pobell
,
Matter and Methods at Low Temperatures
, 3rd ed. (
Springer
,
Berlin
,
2007
).
17.
J. E.
Robinson
,
Phys. Rev.
82
,
440
(
1951
).
18.
R. B.
Hallock
and
E. B.
Flint
,
Phys. Rev. Lett.
31
,
1383
(
1973
).
19.
H.
Luck
and
C.
Trepp
,
Cryogenics
32
,
703
(
1992
).
20.
N. R.
Beysengulov
,
C. A.
Mikolas
,
J. M.
Kitzman
,
J. R.
Lane
,
D.
Edmunds
,
D. G.
Rees
,
E. A.
Henriksen
,
S. A.
Lyon
, and
J.
Pollanen
,
J. Low Temp. Phys.
208
,
482
(
2022
).
21.
A. E.
Oriani
, “
Multimodal and ultra high-Q superconducting niobium cavities for circuit quantum electrodynamics
,” Ph.D. thesis (
The University of Chicago
,
2022
).
22.
L.
Tisza
,
Nature
141
,
913
(
1938
).
23.
G.
Van der Heijden
,
W.
De Voogt
, and
H.
Kramers
,
Physica
59
,
473
(
1972
).
24.
R.
Childers
and
J.
Tough
,
J. Low Temp. Phys.
15
,
63
(
1974
).
25.

We note that during these measurements the filling line used for the control experiments described above remained mounted on the cryostat but was disconnected from the experimental cell and evacuated. The reduced base temperature shown in Fig. 2(b) was due to a lower helium flow rate through the 1 K pot. The stable base temperature without helium in the filling line, and the temperature oscillations when helium was present, were observed over a range of base temperatures. For our cryostat the base temperature typically settles within a range of 1.10 to 1.25 K, depending on the experimental conditions.

26.
G.
Yang
,
A.
Fragner
,
G.
Koolstra
,
L.
Ocola
,
D.
Czaplewski
,
R.
Schoelkopf
, and
D.
Schuster
,
Phys. Rev. X
6
,
011031
(
2016
).
27.
D.
Marty
,
J. Phys. C: Solid State Phys.
19
,
6097
(
1986
).
28.
X.
Zhou
,
G.
Koolstra
,
X.
Zhang
,
G.
Yang
,
X.
Han
,
B.
Dizdar
,
X.
Li
,
R.
Divan
,
W.
Guo
,
K. W.
Murch
et al,
Nature
605
,
46
(
2022
).
You do not currently have access to this content.