Laser Thomson scattering (LTS) is a measurement technique that can determine electron velocity distribution functions in plasma systems. However, accurately inferring quantities of interest from an LTS signal requires the selection of a plasma physics submodel, and comprehensive uncertainty quantification (UQ) is needed to interpret the results. Automated model selection, parameter estimation, and UQ are particularly challenging for low-density, low-temperature, potentially non-Maxwellian plasmas like those created in space electric propulsion devices. This paper applies Bayesian inference and model selection to a Raman-calibrated LTS diagnostic in the context of such plasmas. Synthetic data are used to explore the performance of the method across signal-to-noise ratios and model fidelity regimes. Plasmas with Maxwellian and non-Maxwellian velocity distributions are well characterized using priors that span a range of accuracy and specificity. The model selection framework is shown to accurately detect the type of plasmas generating the electron velocity distribution submodel for signal-to-noise ratios greater than around 5. In addition, the Bayesian framework validates the widespread use of 95% confidence intervals from least-squares inversion as a conservative estimate of the uncertainty bounds. However, epistemic posterior correlations between the variables diverge between least-squares and Bayesian estimates as the number of variable parameters increases. This divergence demonstrates the need for Bayesian inference in cases where accurate correlations between electron parameters are necessary. Bayesian model selection is then applied to experimental Thomson scattering data collected in a nanosecond pulsed plasma, generated with a discharge voltage of 5 and 10 kV at a neutral argon background pressure of 7 Torr-Ar. The Bayesian maximum a posteriori estimates of the electron temperature and number density are 1.98 and 2.38 eV and 2.6 × 1018 and 2.72 × 1018 m−3, using the Maxwellian and Druyvesteyn submodels, respectively. Furthermore, for this dataset, the model selection criterion indicates strong support for the Maxwellian distribution at 10 kV discharge voltage and no strong preference between Maxwellian and Druyvesteyn distributions at 5 kV. The logarithmic Bayes’ factors for these cases are −35.76 and 1.07, respectively.

1.
P. J.
Roberts
,
B. A.
Jorns
, and
V. H.
Chaplin
, “
Experimental characterization of wave-induced azimuthal ion velocities in a hollow cathode plume
,” in
AIAA SCITECH 2022 Forum
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2022
).
2.
P. J.
Roberts
and
B.
Jorns
, “
Characterization of electron Mach number in a hollow cathode with Thomson scattering
,” in
AIAA SCITECH 2023 Forum
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2023
), p.
1
.
3.
B.
Vincent
,
S.
Tsikata
, and
S.
Mazouffre
, “
Incoherent Thomson scattering measurements of electron properties in a conventional and magnetically-shielded Hall thruster
,”
Plasma Sources Sci. Technol.
29
,
035015
(
2020
).
4.
J. P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
5.
G.
Giono
,
J. T.
Gudmundsson
,
N.
Ivchenko
,
S.
Mazouffre
,
K.
Dannenmayer
,
D.
Loubère
,
L.
Popelier
,
M.
Merino
, and
G.
Olentšenko
, “
Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster
,”
Plasma Sources Sci. Technol.
27
,
015006
(
2017
).
6.

The EVDF is the derivative of the EEPF.

7.
K. R.
Trent
and
A. D.
Gallimore
, “
EEDF control of a Hall thruster plasma using a downstream reverse orientation cathode
,” in
35th International Electric Propulsion Conference
,
Atlanta, GA
,
2017
.
8.
C. J.
Durot
,
B. A.
Jorns
,
E. T.
Dale
, and
A. D.
Gallimore
, “
Laser-induced fluorescence measurement of the anomalous collision frequency in a 9-kW magnetically-shielded Hall thruster
,” in
35th International Electric Propulsion Conference
,
Atlanta, GA
,
2017
.
9.
K.
Muraoka
and
A.
Kono
, “
Laser Thomson scattering for low-temperature plasmas
,”
J. Phys. D: Appl. Phys.
44
,
043001
(
2011
).
10.
B.
Vincent
, “
Incoherent Thomson scattering investigations in Hall thruster, planar magnetron and ECR ion source plasmas
,” Ph.D. thesis (
ICARE—Institut de Combustion, Aérothermique, Réactivité et Environnement
,
Orleans
,
2019
).
11.
R. L.
Washeleski
,
E. J.
Meyer
, and
L. B.
King
, “
Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas
,”
Rev. Sci. Instrum.
84
,
105101
(
2013
).
12.
A.
Dinklage
,
R.
Fischer
, and
J.
Svensson
, “
Topics and methods for data validation by means of Bayesian probability theory
,”
Fusion Sci. Technol.
46
,
355
364
(
2004
).
13.
R.
Fischer
,
C.
Wendland
,
A.
Dinklage
,
S.
Gori
,
V.
Dose
, and
t. W. A. S.
team
, “
Thomson scattering analysis with the Bayesian probability theory
,”
Plasma Phys. Controlled Fusion
44
,
1501
1519
(
2002
).
14.
R.
Fischer
,
A.
Dinklage
, and
E.
Pasch
, “
Bayesian modelling of fusion diagnostics
,”
Plasma Phys. Controlled Fusion
45
,
1095
1111
(
2003
).
15.
S.
Kwak
,
J.
Svensson
,
S.
Bozhenkov
,
J.
Flanagan
,
M.
Kempenaars
,
A.
Boboc
, and
Y. C.
Ghim
, “
Bayesian modelling of Thomson scattering and multichannel interferometer diagnostics using Gaussian processes
,”
Nucl. Fusion
60
,
046009
(
2020
).
16.
M. M.
Saravia
,
A.
Giacobbe
, and
T.
Andreussi
, “
Bayesian analysis of triple Langmuir probe measurements for the characterization of Hall thruster plasmas
,”
Rev. Sci. Instrum.
90
,
023502
(
2019
).
17.
N. P.
Brown
,
S. J.
Grauer
,
J. A.
Deibel
,
M. L. R.
Walker
, and
A. M.
Steinberg
, “
Bayesian framework for THz-TDS plasma diagnostics
,”
Opt. Express
29
,
4887
4901
(
2021
).
18.
C. B.
Whittaker
,
A.
Gorodetsky
, and
B. A.
Jorns
, “
Model inference from electrospray thruster array tests
,” in
AIAA SCITECH 2022 Forum
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2022
).
19.
J.
Bak
,
J. L.
Suazo Betancourt
,
A.
Rekhy
,
A.
Abbasszadehrad
,
R. B.
Miles
,
C. M.
Limbach
, and
M. L. R.
Walker
, “
High resolution spatially extended 1D laser scattering diagnostics using volume Bragg grating notch filters
,”
Rev. Sci. Instrum.
94
,
023003
(
2023
).
20.
A. C.
Tibère-Inglesse
,
S. D.
McGuire
,
P.
Mariotto
, and
C. O.
Laux
, “
Measurements and analysis of rotational temperatures obtained with Raman and optical emission spectroscopy in a nonequilibrium nitrogen plasma
,”
Plasma Sources Sci. Technol.
30
,
125019
(
2021
).
21.
C. M.
Penney
,
R. L.
St Peters
, and
M.
Lapp
, “
Absolute rotational Raman cross sections for N2, O2, and CO2
,”
J. Opt. Soc. Am.
64
,
712
(
1974
).
22.
A. J.
Friss
, “
Cavity enhanced Thomson scattering for plasma diagnostics
,” Ph.D. thesis (
Colorado State University
,
2019
).
23.
H.
Sugai
,
I.
Ghanashev
,
M.
Hosokawa
,
K.
Mizuno
,
K.
Nakamura
,
H.
Toyoda
, and
K.
Yamauchi
, “
Electron energy distribution functions and the influence on fluorocarbon plasma chemistry
,”
Plasma Sources Sci. Technol.
10
,
378
385
(
2001
).
24.
S. F.
Adams
,
J. A.
Miles
, and
V. I.
Demidov
, “
Non-Maxwellian electron energy distribution function in a pulsed plasma modeled with dual effective temperatures
,”
Phys. Plasmas
24
,
053508
(
2017
).
25.
A. A.
Haji Abolhassani
and
J.-P.
Matte
, “
Multi-temperature representation of electron velocity distribution functions. I. Fits to numerical results
,”
Phys. Plasmas
19
,
102103
(
2012
).
26.
J. B.
Boffard
,
R. O.
Jung
,
C. C.
Lin
,
L. E.
Aneskavich
, and
A. E.
Wendt
, “
Optical diagnostics for characterization of electron energy distributions: Argon inductively coupled plasmas
,”
Plasma Sources Sci. Technol.
20
,
055006
(
2011
).
27.
J. T.
Gudmundsson
and
A.
Hecimovic
, “
Foundations of DC plasma sources
,”
Plasma Sources Sci. Technol.
26
,
123001
(
2017
).
28.
H.
Amemiya
, “
Sheath Formation criterion and ion flux for non-Maxwellian plasma
,”
J. Phys. Soc. Jpn.
66
,
1335
1338
(
1997
).
29.
A.
Gelman
,
J. B. B.
Carlin
,
H. S. S.
Stern
, and
D. B. B.
Rubin
,
Bayesian Data Analysis
, 3rd ed. (
Texts in Statistical Science
,
2014
).
30.

In this text, “distribution” is used loosely to refer to both probability density and mass functions (PDFs and PMFs).

31.
R.
Fischer
and
A.
Dinklage
, “
Integrated data analysis of fusion diagnostics by means of the Bayesian probability theory
,”
Rev. Sci. Instrum.
75
,
4237
4239
(
2004
).
32.
S. J.
Grauer
,
T. A.
Sipkens
,
P. J.
Hadwin
, and
K. J.
Daun
, “
Statistical inversion, uncertainty quantification, and the optimal design of optical experiments
,” in
Optical Diagnostics for Reacting and Non-Reacting Flows: Theory and Practice
(
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
,
2023
), pp.
1137
1202
.
33.
A.
Steinberg
and
A. K.
Patnaik
, “
Light-matter interactions and their measurement: A primer for optical diagnostics
,” in
Optical Diagnostics for Reacting and Non-Reacting Flows: Theory and Practice
(
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
,
2023
), pp.
15
74
.
34.
N.
Friel
and
J.
Wyse
, “
Estimating the evidence—A review
,”
Stat. Neerl.
66
,
288
308
(
2012
).
35.
M. A.
Chilenski
,
M.
Greenwald
,
Y.
Marzouk
,
J. E.
Rice
, and
A. E.
White
, “
On the importance of model selection when inferring impurity transport coefficient profiles
,”
Plasma Phys. Controlled Fusion
61
,
125012
(
2019
).
36.
F.
Sciortino
,
N.
Howard
,
E.
Marmar
,
T.
Odstrcil
,
N.
Cao
,
R.
Dux
,
A.
Hubbard
,
J.
Hughes
,
J.
Irby
,
Y.
Marzouk
,
L.
Milanese
,
M.
Reinke
,
J.
Rice
, and
P.
Rodriguez-Fernandez
, “
Inference of experimental radial impurity transport on Alcator C-Mod: Bayesian parameter estimation and model selection
,”
Nucl. Fusion
60
,
126014
(
2020
).
37.
J. L. S.
Betancourt
,
J.
Lopez-Uricoechea
,
N.
Butler-Craig
,
A. M.
Steinberg
, and
M. L. R.
Walker
, “
An incoherent Thomson scattering system for plasma boundary studies
,”
Rev. Sci. Instrum.
95
,
043001
(
2024
).
38.
G. A. F.
Seber
and
C. J.
Wild
,
Nonlinear Regression
(
John Wiley & Sons
,
New Jersey
,
2003
), Vol.
62
, pp.
21
30
.
39.
D. A.
Long
, “
Classical theory of Rayleigh and Raman scattering
,” in
The Raman Effect
(
John Wiley & Sons, Ltd
,
Chichester, UK
,
2002
), pp.
31
48
.
40.
N.
John
and
S.
George
, “
Raman spectroscopy
,” in
Spectroscopic Methods for Nanomaterials Characterization
(
Elsevier
,
2017
), pp.
95
127
.
41.
J. D.
Jackson
, “
Classical electrodynamics
,” in
Classical Electrodynamics
, 3rd ed. (
Wiley
,
1998
), pp.
661
698
.
42.
J. B.
Marion
and
M. A.
Heald
, “
Classical electromagnetic radiation
,” in
Classical Electromagnetic Radiation
(
Dover Publications
,
2012
) Chap. 10, pp.
335
370
.
43.
D. H.
Froula
,
S. H.
Glenzer
,
N. C.
Luhmann
, and
J.
Sheffield
, “
Scattered power spectrum
,” in
Plasma Scattering of Electromagnetic Radiation
(
Elsevier
,
2011
), pp.
31
44
.
44.
D. J.
Griffiths
,
Introduction to Electrodynamics
(
American Association of Physics Teachers
,
2005
).
45.
D. W.
Ball
, “
The basics of spectroscopy
,” in
The Basics of Spectroscopy
(
SPIE
,
2001
), pp.
91
104
.
46.
J. M.
Hollas
, “
Modern spectroscopy
,” in
Modern Spectroscopy
, 4th ed. (
Wiley
,
2004
), pp.
103
135
.
47.
M. J.
van de Sande
, “
Laser scattering on low-temperature plasmas: High resolution and stray light rejection
,” Ph.D. thesis (
Eindhoven Technical University
,
2004
).
48.
W. G.
Vincenti
,
C. H.
Kruger
, and
T.
Teichmann
, “
Introduction to physical gas dynamics
,”
Phys. Today
19
(
10
),
95
(
1966
).
You do not currently have access to this content.