Piezoelectric actuators commonly used in microgrippers have a small stroke, and their accuracy is reduced by the transmission amplification unit, which leads to a contradiction between the clamping range and the clamping accuracy in existing piezoelectric-actuated microgrippers. This paper proposes a design scheme to divide the total clamping range of the microgripper into segments based on the compliant multistable mechanism (CMM). First, by using the stable equilibrium positions of the CMM, the total clamping range of the microgripper is divided into multiple smaller clamping sub-intervals to accommodate objects of different scales. Then, the theoretical models of the displacement amplification ratio of the microgripper amplification mechanism and the stiffness of the microgripper in different clamping sub-intervals are established, and the force-displacement characteristics of the CMM are analyzed. Next, through finite element simulation, the correctness of the theoretical analyses is verified, and it is shown that objects between 0 µm and 1.650 mm can be clamped using four clamping sub-intervals under a five times displacement amplification ratio. Finally, a microgripper of the CMM consisting of two three-segment fully compliant bistable mechanisms connected in series is designed and machined, and microgripper segmented clamping experiments are conducted. The experimental results demonstrate the feasibility of the design scheme proposed in this paper.

1.
M.
Akbari
,
F.
Barazandeh
, and
H.
Barati
, “
A novel approach to design and fabricate an electrothermal microgripper for cell manipulation
,”
Sens. Actuators, A
346
,
113877
(
2022
).
2.
R. H.
Soon
,
L.
Yu
, and
C. T.
Lim
, “
A soft sensorized microfluidic tubular actuating gripper
,”
Adv. Mater. Technol.
5
(
5
),
2000150
(
2020
).
3.
W.
Chen
,
X.
Shi
,
W.
Chen
, and
J.
Zhang
, “
A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling
,”
Rev. Sci. Instrum.
84
(
11
),
115111
(
2013
).
4.
A.
Nikoobin
and
M.
Hassani Niaki
, “
Deriving and analyzing the effective parameters in microgrippers performance
,”
Sci. Iran.
19
(
6
),
1554
1563
(
2012
).
5.
Q.
Xu
, “
Design and smooth position/force switching control of a miniature gripper for automated microhandling
,”
IEEE Trans. Ind. Inf.
10
(
2
),
1023
1032
(
2014
).
6.
Y.
Liu
,
Y.
Zhang
, and
Q.
Xu
, “
Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams
,”
IEEE/ASME Trans. Mechatron.
22
(
1
),
476
486
(
2017
).
7.
W.
Chen
,
X.
Zhang
,
H.
Li
,
J.
Wei
, and
S.
Fatikow
, “
Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper
,”
Mech. Mach. Theory
118
,
32
52
(
2017
).
8.
Q.
Shi
,
Z.
Yu
,
H.
Wang
,
T.
Sun
,
Q.
Huang
, and
T.
Fukuda
, “
Development of a highly compact microgripper capable of online calibration for multisized microobject manipulation
,”
IEEE Trans. Nanotechnol.
17
(
4
),
657
661
(
2018
).
9.
T. K.
Das
,
B.
Shirinzadeh
,
M.
Ghafarian
,
A.
Al-Jodah
, and
J.
Pinskier
, “
Characterization of a compact piezoelectric actuated microgripper based on double-stair bridge-type mechanism
,”
J. Micro-Bio Rob.
16
,
79
92
(
2020
).
10.
G.
Fantoni
,
O.
Jorg
, and
V.
Tincani
, “
Indirect force measurement system in a mechanical microgripper
,”
Precis. Eng.
78
,
206
214
(
2022
).
11.
P.
Liu
,
J.
Qian
,
P.
Yan
, and
Y.
Liu
, “
Design, analysis and evaluation of a self-lockable constant-force compliant gripper
,”
Sens. Actuators, A
335
,
113354
(
2022
).
12.
Z.
Long
,
J.
Zhang
,
Y.
Liu
,
C.
Han
,
Y.
Li
, and
Z.
Li
, “
Dynamics modeling and residual vibration control of a piezoelectric gripper during wire bonding
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
7
(
12
),
2045
2056
(
2017
).
13.
H.
Llewellyn-Evans
,
C. A.
Griffiths
, and
A. A.
Fahmy
, “
An experimental study into displacement of a shape memory alloy actuated robotic microgripper
,”
Eng. Res. Express
2
(
1
),
015027
(
2020
).
14.
J.
Zhang
,
H.
Wu
,
H.
Shen
,
L.
Xue
,
W.
Zhang
,
Y.
Liu
,
F.
Du
,
L.
Pan
,
H.
Huang
,
L.
Lin
, and
L.
Chen
, “
Improvement procedure of temperature field for electrothermal microgripper with parallel beam
,”
Sens. Actuators, A
341
,
113579
(
2022
).
15.
A.
Roy
and
M.
Nabi
, “
Modeling of MEMS electrothermal microgripper employing POD-DEIM and POD method
,”
Microelectron. Reliab.
125
,
114338
(
2021
).
16.
G.
Si
,
M.
Ding
,
Z.
Zhang
, and
X.
Zhang
, “
Theoretical thermal-mechanical modelling and experimental validation of a novel 3D three-fingered electrothermal microgripper
,”
Precis. Eng.
77
,
205
219
(
2022
).
17.
H.
Majidi Fard-Vatan
and
M.
Hamedi
, “
Design, analysis and fabrication of a novel hybrid electrothermal microgripper in microassembly cell
,”
Microelectron. Eng.
231
,
111374
(
2020
).
18.
J. C.
Kuo
,
H. W.
Huang
,
S. W.
Tung
, and
Y. J.
Yang
, “
A hydrogel-based intravascular microgripper manipulated using magnetic fields
,”
Sens. Actuators, A
211
,
121
130
(
2014
).
19.
Y.
Hao
,
C.
Wang
,
Z.
Sun
,
W.
Yuan
, and
H.
Chang
, “
Rotatory microgripper based on a linear electrostatic driving scheme
,”
Microelectron. Eng.
248
,
111601
(
2021
).
20.
W.
Chen
,
J.
Qu
,
W.
Chen
, and
J.
Zhang
, “
A compliant dual-axis gripper with integrated position and force sensing
,”
Mechatronics
47
,
105
115
(
2017
).
21.
F.
Wang
,
B.
Shi
,
Z.
Huo
,
Y.
Tian
, and
D.
Zhang
, “
Control and dynamic releasing method of a piezoelectric actuated microgripper
,”
Precis. Eng.
68
,
1
9
(
2021
).
22.
Z.
Lyu
and
Q.
Xu
, “
Recent design and development of piezoelectric-actuated compliant microgrippers: A review
,”
Sens. Actuators, A
331
,
113002
(
2021
).
23.
X.
Chen
,
Z.
Deng
,
S.
Hu
,
J.
Gao
, and
X.
Gao
, “
Designing a novel model of 2-DOF large displacement with a stepwise piezoelectric-actuated microgripper
,”
Microsyst. Technol.
26
,
2809
2816
(
2020
).
24.
T. K.
Das
,
B.
Shirinzadeh
,
M.
Ghafarian
,
A.
Al-Jodah
,
Y.
Zhong
, and
J.
Smith
, “
Design, analysis and experimental investigations of a high precision flexure-based microgripper for micro/nano manipulation
,”
Mechatronics
69
,
102396
(
2020
).
25.
Z.
Lyu
and
Q.
Xu
, “
Novel design of a piezoelectrically actuated compliant microgripper with high area-usage efficiency
,”
Precis. Eng.
76
,
1
11
(
2022
).
26.
T.
Kumar Das
,
B.
Shirinzadeh
,
A.
Al-Jodah
,
M.
Ghafarian
, and
J.
Pinskier
, “
A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation
,”
Mech. Mach. Theory
155
,
104069
(
2021
).
27.
S.
Iqbal
and
A.
Malik
, “
A review on MEMS based micro displacement amplification mechanisms
,”
Sens. Actuators, A
300
,
111666
(
2019
).
28.
W.
Chen
,
C.
Kong
,
Q.
Lu
,
Y.
Liang
,
L.
Luo
, and
H.
Wei
, “
Nonlinear analysis, optimization, and testing of the bridge-type compliant displacement amplification mechanism with a single input force for microgrippers
,”
Precis. Eng.
73
,
166
182
(
2022
).
29.
W.
Ai
and
Q.
Xu
, “
New structural design of a compliant gripper based on the Scott–Russell mechanism
,”
Int. J. Adv. Rob. Syst.
11
(
12
),
192
(
2014
).
30.
J.
Zhu
and
G.
Hao
, “
Design and test of a compact compliant gripper using the Scott–Russell mechanism
,”
Arch. Civ. Mech. Eng.
20
,
81
(
2020
).
31.
Y.
Ding
and
L. J.
Lai
, “
Design and analysis of a displacement amplifier with high load capacity by combining bridge-type and Scott–Russell mechanisms
,”
Rev. Sci. Instrum.
90
(
6
),
065102
(
2019
).
32.
C.
Liang
,
F.
Wang
,
B.
Shi
,
Z.
Huo
,
K.
Zhou
,
Y.
Tian
, and
D.
Zhang
, “
Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation
,”
Sens. Actuators, A
269
,
227
237
(
2018
).
33.
Y.
Zhao
,
X.
Huang
,
Y.
Liu
,
G.
Wang
, and
K.
Hong
, “
Design and control of a piezoelectric-driven microgripper perceiving displacement and gripping force
,”
Micromachines
11
(
2
),
121
(
2020
).
34.
Z.
Lyu
,
Z.
Wu
, and
Q.
Xu
, “
Design and development of a novel piezoelectrically actuated asymmetrical flexible microgripper
,”
Mech. Mach. Theory
171
,
104736
(
2022
).
35.
T. K.
Das
,
B.
Shirinzadeh
,
A.
Al-Jodah
,
M.
Ghafarian
, and
J.
Pinskier
, “
Computational parametric analysis and experimental investigations of a compact flexure-based microgripper
,”
Precis. Eng.
66
,
363
373
(
2020
).
36.
C.
Shi
,
X.
Dong
, and
Z.
Yang
, “
A microgripper with a large magnification ratio and high structural stiffness based on a flexure-enabled mechanism
,”
IEEE/ASME Trans. Mechatron.
26
(
6
),
3076
3086
(
2021
).
37.
N.
Ren
,
T.
Geng
, and
F.
Zhou
, “
Analysis and application of rigidity of four kinds of composite flexural hinge
,”
J. Mech. Transm.
37
(
10
),
119
122
(
2013
).
38.
G.
Chen
and
F.
Ma
, “
Kinetostatic modeling of fully compliant bistable mechanisms using Timoshenko beam constraint model
,”
J. Mech. Des.
137
(
2
),
022301
(
2015
).
39.
G.
Li
and
G.
Chen
, “
A function for characterizing complete kinetostatic behaviors of compliant bistable mechanisms
,”
Mech. Sci.
5
(
2
),
67
78
(
2014
).
You do not currently have access to this content.