Triboelectric nanogenerators (TENGs) can play a pivotal role in harnessing non-utilized reciprocating motion and convert it into electrical energy that can later be stored in a battery or capacitor to power various Internet of Things-based smart electronic and wearable devices. Herein, we designed a cost-effective instrumental test bed focused on investigating the output performance of a horizontal contact separation mode triboelectric nanogenerator by varying the input parameters, such as applied force, motor speed, triboplate separation, and frequency of instrumental setup. The test bed mainly consists of three major parts: (i) application of force, (ii) tapping of TENG sample, and (iii) output parameters measurement. The output performance in terms of open circuit output voltage (VOC), short circuit current (ISC), and power density of polydimethylsiloxane-based TENG was monitored and optimized by varying the input parameters. A low-cost current measuring circuitry using an operational amplifier integrated circuit has been proposed with 92% accuracy. The maximum value of VOC and ISC was observed to be 254 V and 31.8 µA at a motor speed of 600 rpm, the distance between both the plates was 6 mm, the input applied force of 40 N, and the striking frequency of 3 Hz. The maximum power density of 2.1 W/m2 was obtained at an input impedance of 8 kΩ. The durability of the test bed as well as the TENG sample was also measured for 25 h. The degree of uncertainty was measured for VOC, ISC, and applied force and calculated to be 1.62%, 7.45%, and 6.27%, respectively.

1.
C.-W.
Su
,
L.-D.
Pang
,
M.
Qin
,
O.-R.
Lobonţ
, and
M.
Umar
,
Energy
274
,
127304
(
2023
).
2.
H.
Liu
,
H.
Fu
,
L.
Sun
,
C.
Lee
, and
E. M.
Yeatman
,
Renewable Sustainable Energy Rev.
137
,
110473
(
2021
).
3.
M. B.
Walsh
,
Villanova Environ. Law J.
19
,
193
(
2008
).
4.
Z.
Ren
,
L.
Wu
,
Y.
Pang
,
W.
Zhang
, and
R.
Yang
,
Nano Energy
100
,
107522
(
2022
).
5.
L.
Hassanpourmoghadam
,
B.
Aminzadeh Goharrizi
,
A.
Torabian
,
E.
Bouteh
, and
B. E. J. B.
Rittmann
,
Biomass Bioenergy
169
,
106692
(
2023
).
6.
A.
Matin Nazar
,
K.-J. I.
Egbe
, and
P. J. E. T.
Jiao
,
Energy Technol.
10
(
6
),
2200063
(
2022
).
7.
P.
Jiao
,
A.
Matin Nazar
,
K.-J. I.
Egbe
, and
A. J. S. E. T.
Rayegani
Magnetically circular layers triboelectric nanogenerators (MCL-TENG) for velocity sensing and damage detection
,”
Sustainable Energy Technol. Assess.
53
,
102644
(
2022
).
8.
D.
Zhu
and
S.
Beeby
,
Energy Harvesting Systems: Principles, Modeling Applications
(
Springer
,
2011
), pp.
1
77
.
9.
M. A.
Halim
,
H.
Cho
, and
J. Y.
Park
,
Energy Convers. Manage.
106
,
393
(
2015
).
10.
M.
Kang
and
E. M.
Yeatman
,
Appl. Energy
262
,
114496
(
2020
).
11.
C.
Wang
,
Y.
Ji
,
S.-K.
Lai
,
Y.
Liu
,
Y.
Hao
,
G.
Li
,
C.
Wang
, and
G.-L.
Wen
,
Nano Energy
114
,
108630
(
2023
).
12.
D.
Zhu
,
M. J.
Tudor
, and
S. P.
Beeby
,
Meas. Sci. Technol.
21
(
2
),
022001
(
2009
).
13.
H.
Chen
,
C.
Xing
,
Y.
Li
,
J.
Wang
, and
Y.
Xu
,
J. Sustainable Energy Fuels
4
(
3
),
1063
(
2020
).
14.
S.
Shajari
,
Ph.D. thesis, University of Calgary
(
2020
).
15.
S.
Niu
and
Z. L.
Wang
,
Nano Energy
14
,
161
(
2015
).
17.
S.
Kumar
,
R. K.
Jha
,
U.
Chitnis
,
S.
Singh
,
J. K.
Anand
,
S. K.
Roy
, and
A.
Goswami
,
J. Vac. Sci. Technol. B
41
(
3
),
032806
(
2023
).
18.
W.
Liu
,
Z.
Wang
,
G.
Wang
,
G.
Liu
,
J.
Chen
,
X.
Pu
,
Y.
Xi
,
X.
Wang
,
H.
Guo
,
C.
Hu
, and
Z. L.
Wang
,
Nat. Commun.
10
(
1
),
1426
(
2019
).
19.
M. P.
Mahmud
,
J.
Lee
,
G.
Kim
,
H.
Lim
, and
K.-B.
Choi
,
Microelectron. Eng.
159
,
102
(
2016
).
20.
L.
Cheng
,
Q.
Xu
,
Y.
Zheng
,
X.
Jia
, and
Y.
Qin
,
Nat. Commun.
9
(
1
),
3773
(
2018
).
21.
X.
He
,
H.
Guo
,
X.
Yue
,
J.
Gao
,
Y.
Xi
, and
C.
Hu
,
Nanoscale
7
(
5
),
1896
(
2015
).
22.
L.
Niu
,
X.
Miao
,
Y.
Li
,
X.
Xie
,
Z.
Wen
, and
G.
Jiang
,
Nanoscale Res. Lett.
15
,
181
(
2020
).
23.
M.
Salauddin
,
S. M. S.
Rana
,
M. T.
Rahman
,
M.
Sharifuzzaman
,
P.
Maharjan
,
T.
Bhatta
,
H.
Cho
,
S. H.
Lee
,
C.
Park
,
K.
Shrestha
et al,
Adv. Funct. Mater.
32
(
5
),
2107143
(
2022
).
24.
I. Z.
Hossain
,
A.
Khan
, and
G.
Hossain
,
Energies
15
(
15
),
5541
(
2022
).
25.
Q.
Shi
,
H.
Wu
,
H.
Wang
,
H.
Wu
, and
C.
Lee
,
Adv. Energy Mater.
7
(
22
),
1701300
(
2017
).
26.
X.
Cao
,
Y.
Xiong
,
J.
Sun
,
X.
Zhu
,
Q.
Sun
, and
Z. L.
Wang
,
Adv. Funct. Mater.
31
(
33
),
2102983
(
2021
).
27.
M.-G.
Kang
,
W.-S.
Jung
,
C.-Y.
Kang
, and
S.-J.
Yoon
,
Actuators
5
,
5
(
2016
).
28.
J. J.
Ruan
,
R. A.
Lockhart
,
P.
Janphuang
,
A. V.
Quintero
,
D.
Briand
, and
N.
de Rooij
,
IEEE Trans. Instrum. Meas.
62
(
11
),
2966
(
2013
).
29.
S.
Zhao
,
H.
Fu
,
K.
Ma
, and
J.
Ma
,
IEEE Sensors Journal
18
(
22
),
9286
(
2018
).
30.
D.
Hong
,
Y.-M.
Choi
, and
J.
Jeong
,
Rev. Sci. Instrum.
89
(
6
),
065110
(
2018
).
31.
M. O.
Shaikh
,
Y.-B.
Huang
,
C.-C.
Wang
, and
C.-H.
Chuang
,
Micromachines
10
(
7
),
438
(
2019
).
32.
H.
Zhang
,
Y.
Lu
,
A.
Ghaffarinejad
, and
P.
Basset
,
Nano Energy
51
,
10
(
2018
).
33.
S. W.
Chen
,
X.
Cao
,
N.
Wang
,
L.
Ma
,
H. R.
Zhu
,
M.
Willander
,
Y.
Jie
, and
Z. L.
Wang
,
Adv. Energy Mater.
7
(
1
),
1601255
(
2017
).
34.
S. S. K.
Mallineni
,
H.
Behlow
,
R.
Podila
, and
A. M.
Rao
,
Nanotechnol. Rev.
7
(
2
),
149
(
2018
).
35.
A.
Sharma
and
P.
Agarwal
,
J. Vib. Control
29
(
3–4
),
942
(
2023
).
36.
N.
Wang
and
W.
Lin
,
Neurocomputing
179
,
110
(
2016
).
37.
L.
Liu
,
Electrostatic Generation and Control on Textiles
(
North Carolina State University
,
2010
).
38.
J.
Chen
,
Y. D.
Lim
,
Y.
Zhao
,
J.
Chen
,
B.
Yang
,
Z.
Wu
, and
Y.
Li
,
ACS Appl. Electron. Mater.
3
(
1
),
476
(
2021
).
39.
P.
Lv
,
Z.
Dong
,
X.
Dai
, and
X.
Qiu
,
ACS Appl. Polym. Mater.
1
(
10
),
2597
(
2019
).
40.
Y.
Xie
,
Z.
Wang
,
X.
Ren
,
M. F.
Antwi-Afari
,
Y.
Wang
,
H.-Y.
Mi
,
B.
Yang
,
C.
Liu
, and
C.
Shen
,
Compos. Sci. Technol.
237
,
110014
(
2023
).
41.
G.
Min
,
Y.
Xu
,
P.
Cochran
,
N.
Gadegaard
,
D. M.
Mulvihill
, and
R.
Dahiya
,
Nano Energy
83
,
105829
(
2021
).

Supplementary Material

You do not currently have access to this content.