We present the development of a versatile apparatus for 6.2 eV laser-based time and angle-resolved photoemission spectroscopy with micrometer spatial resolution (time-resolved μ-ARPES). With a combination of tunable spatial resolution down to ∼11 μm, high energy resolution (∼11 meV), near-transform-limited temporal resolution (∼280 fs), and tunable 1.55 eV pump fluence up to 3 mJ/cm2, this time-resolved μ-ARPES system enables the measurement of ultrafast electron dynamics in exfoliated and inhomogeneous materials. We demonstrate the performance of our system by correlating the spectral broadening of the topological surface state of Bi2Se3 with the spatial dimension of the probe pulse, as well as resolving the spatial inhomogeneity contribution to the observed spectral broadening. Finally, after in situ exfoliation, we performed time-resolved μ-ARPES on a ∼30 μm flake of transition metal dichalcogenide WTe2, thus demonstrating the ability to access ultrafast electron dynamics with momentum resolution on micro-exfoliated materials.

1.
A.
Damascelli
, “
Probing the electronic structure of complex systems by ARPES
,”
Phys. Scr.
T109
,
61
(
2004
).
2.
J. A.
Sobota
,
Y.
He
, and
Z.-X.
Shen
, “
Angle-resolved photoemission studies of quantum materials
,”
Rev. Mod. Phys.
93
,
025006
(
2021
).
3.
C. H. P.
Wen
,
H. C.
Xu
,
Q.
Yao
,
R.
Peng
,
X. H.
Niu
,
Q. Y.
Chen
,
Z. T.
Liu
,
D. W.
Shen
,
Q.
Song
,
X.
Lou
,
Y. F.
Fang
,
X. S.
Liu
,
Y. H.
Song
,
Y. J.
Jiao
,
T. F.
Duan
,
H. H.
Wen
,
P.
Dudin
,
G.
Kotliar
,
Z. P.
Yin
, and
D. L.
Feng
, “
Unveiling the superconducting mechanism of Ba0.51K0.49BiO3
,”
Phys. Rev. Lett.
121
,
117002
(
2018
).
4.
T. P.
Devereaux
,
T.
Cuk
,
Z.-X.
Shen
, and
N.
Nagaosa
, “
Anisotropic electron-phonon interaction in the cuprates
,”
Phys. Rev. Lett.
93
,
117004
(
2004
).
5.
T.
Cuk
,
D. H.
Lu
,
X. J.
Zhou
,
Z.-X.
Shen
,
T. P.
Devereaux
, and
N.
Nagaosa
, “
A review of electron–phonon coupling seen in the high-Tc superconductors by angle-resolved photoemission studies (ARPES)
,”
Phys. Status Solidi B
242
,
3
(
2005
).
6.
B. M.
Ludbrook
,
G.
Levy
,
P.
Nigge
,
M.
Zonno
,
M.
Schneider
,
D. J.
Dvorak
,
C. N.
Veenstra
,
S.
Zhdanovich
,
D.
Wong
,
P.
Dosanjh
,
C.
Straßer
,
A.
Stöhr
,
S.
Forti
,
C. R.
Ast
,
U.
Starke
, and
A.
Damascelli
, “
Evidence for superconductivity in Li-decorated monolayer graphene
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
11795
11799
(
2015
).
7.
Y.
Xia
,
D.
Qian
,
D.
Hsieh
,
L.
Wray
,
A.
Pal
,
H.
Lin
,
A.
Bansil
,
D.
Grauer
,
Y. S.
Hor
,
R. J.
Cava
, and
M. Z.
Hasan
, “
Observation of a large-gap topological-insulator class with a single Dirac cone on the surface
,”
Nat. Phys.
5
,
398
402
(
2009
).
8.
F.
Boschini
,
M.
Zonno
, and
A.
Damascelli
, “
Time-resolved ARPES studies on quantum materials
,”
Rev. Mod. Phys.
96
,
015003
(
2024
).
9.
C. L.
Smallwood
,
R. A.
Kaindl
, and
A.
Lanzara
, “
Ultrafast angle-resolved photoemission spectroscopy of quantum materials
,”
Europhys. Lett.
115
,
27001
(
2016
).
10.
J. A.
Sobota
,
S.
Yang
,
J. G.
Analytis
,
Y. L.
Chen
,
I. R.
Fisher
,
P. S.
Kirchmann
, and
Z.-X.
Shen
, “
Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3
,”
Phys. Rev. Lett.
108
,
117403
(
2012
).
11.
L.
Perfetti
,
P. A.
Loukakos
,
M.
Lisowski
,
U.
Bovensiepen
,
H.
Eisaki
, and
M.
Wolf
, “
Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+ delta by time-resolved photoelectron spectroscopy
,”
Phys. Rev. Lett.
99
,
197001
(
2007
).
12.
J.
Sobota
,
S.-L.
Yang
,
D.
Leuenberger
,
A.
Kemper
,
J.
Analytis
,
I.
Fisher
,
P.
Kirchmann
,
T.
Devereaux
, and
Z.-X.
Shen
, “
Distinguishing bulk and surface electron-phonon coupling in the topological insulator Bi2Se3 using time-resolved photoemission spectroscopy
,”
Phys. Rev. Lett.
113
,
157401
(
2014
).
13.
M. X.
Na
,
A. K.
Mills
,
F.
Boschini
,
M.
Michiardi
,
B.
Nosarzewski
,
R. P.
Day
,
E.
Razzoli
,
A.
Sheyerman
,
M.
Schneider
,
G.
Levy
,
S.
Zhdanovich
,
T. P.
Devereaux
,
A. F.
Kemper
,
D. J.
Jones
, and
A.
Damascelli
, “
Direct determination of mode-projected electron-phonon coupling in the time domain
,”
Science
366
,
1231
1236
(
2019
).
14.
Y. H.
Wang
,
H.
Steinberg
,
P.
Jarillo-Herrero
, and
N.
Gedik
, “
Observation of Floquet-Bloch states on the surface of a topological insulator
,”
Science
342
,
453
457
(
2013
).
15.
F.
Mahmood
,
C.-K.
Chan
,
Z.
Alpichshev
,
D.
Gardner
,
Y.
Lee
,
P. A.
Lee
, and
N.
Gedik
, “
Selective scattering between Floquet–Bloch and Volkov states in a topological insulator
,”
Nat. Phys.
12
,
306
310
(
2016
).
16.
L.
Perfetti
,
P. A.
Loukakos
,
M.
Lisowski
,
U.
Bovensiepen
,
H.
Berger
,
S.
Biermann
,
P. S.
Cornaglia
,
A.
Georges
, and
M.
Wolf
, “
Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition
,”
Phys. Rev. Lett.
97
,
067402
(
2006
).
17.
K.
Okazaki
,
Y.
Ogawa
,
T.
Suzuki
,
T.
Yamamoto
,
T.
Someya
,
S.
Michimae
,
M.
Watanabe
,
Y.
Lu
,
M.
Nohara
,
H.
Takagi
,
N.
Katayama
,
H.
Sawa
,
M.
Fujisawa
,
T.
Kanai
,
N.
Ishii
,
J.
Itatani
,
T.
Mizokawa
, and
S.
Shin
, “
Photo-induced semimetallic states realised in electron–hole coupled insulators
,”
Nat. Commun.
9
,
4322
(
2018
).
18.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
19.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
10451
10453
(
2005
).
20.
M.
Cattelan
and
N. A.
Fox
, “
A perspective on the application of spatially resolved ARPES for 2D materials
,”
Nanomaterials
8
(
5
),
284
(
2018
).
21.
S.-K.
Mo
, “
Angle-resolved photoemission spectroscopy for the study of two-dimensional materials
,”
Nano Convergence
4
,
6
(
2017
).
22.
J.
Madéo
,
M. K. L.
Man
,
C.
Sahoo
,
M.
Campbell
,
V.
Pareek
,
E. L.
Wong
,
A.
Al-Mahboob
,
N. S.
Chan
,
A.
Karmakar
,
B. M. K.
Mariserla
,
X.
Li
,
T. F.
Heinz
,
T.
Cao
, and
K. M.
Dani
, “
Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors
,”
Science
370
,
1199
1204
(
2020
).
23.
J.
Maklar
,
S.
Dong
,
S.
Beaulieu
,
T.
Pincelli
,
M.
Dendzik
,
Y. W.
Windsor
,
R. P.
Xian
,
M.
Wolf
,
R.
Ernstorfer
, and
L.
Rettig
, “
A quantitative comparison of time-of-flight momentum microscopes and hemispherical analyzers for time- and angle-resolved photoemission spectroscopy experiments
,”
Rev. Sci. Instrum.
91
,
123112
(
2020
).
24.
O.
Karni
,
E.
Barré
,
V.
Pareek
,
J. D.
Georgaras
,
M. K. L.
Man
,
C.
Sahoo
,
D. R.
Bacon
,
X.
Zhu
,
H. B.
Ribeiro
,
A. L.
O’Beirne
,
J.
Hu
,
A.
Al-Mahboob
,
M. M. M.
Abdelrasoul
,
N. S.
Chan
,
A.
Karmakar
,
A. J.
Winchester
,
B.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
K.
Barmak
,
J.
Madéo
,
F. H.
da Jornada
,
T. F.
Heinz
, and
K. M.
Dani
, “
Structure of the moiré exciton captured by imaging its electron and hole
,”
Nature
603
,
247
252
(
2022
).
25.
D.
Schmitt
,
J. P.
Bange
,
W.
Bennecke
,
A.
AlMutairi
,
G.
Meneghini
,
K.
Watanabe
,
T.
Taniguchi
,
D.
Steil
,
D. R.
Luke
,
R. T.
Weitz
,
S.
Steil
,
G. S. M.
Jansen
,
S.
Brem
,
E.
Malic
,
S.
Hofmann
,
M.
Reutzel
, and
S.
Mathias
, “
Formation of moiré interlayer excitons in space and time
,”
Nature
608
,
499
503
(
2022
).
26.
S.
Dong
,
M.
Puppin
,
T.
Pincelli
,
S.
Beaulieu
,
D.
Christiansen
,
H.
Hübener
,
C. W.
Nicholson
,
R. P.
Xian
,
M.
Dendzik
,
Y.
Deng
,
Y. W.
Windsor
,
M.
Selig
,
E.
Malic
,
A.
Rubio
,
A.
Knorr
,
M.
Wolf
,
L.
Rettig
, and
R.
Ernstorfer
, “
Direct measurement of key exciton properties: Energy, dynamics, and spatial distribution of the wave function
,”
Nat. Sci.
1
,
e10010
(
2021
).
27.
J. D.
Koralek
,
J. F.
Douglas
,
N. C.
Plumb
,
J. D.
Griffith
,
S. T.
Cundiff
,
H. C.
Kapteyn
,
M. M.
Murnane
, and
D. S.
Dessau
, “
Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy
,”
Rev. Sci. Instrum.
78
,
053905
(
2007
).
28.
J.
Faure
,
J.
Mauchain
,
E.
Papalazarou
,
W.
Yan
,
J.
Pinon
,
M.
Marsi
, and
L.
Perfetti
, “
Full characterization and optimization of a femtosecond ultraviolet laser source for time and angle-resolved photoemission on solid surfaces
,”
Rev. Sci. Instrum.
83
,
043109
(
2012
).
29.
Y.
Ishida
,
T.
Togashi
,
K.
Yamamoto
,
M.
Tanaka
,
T.
Kiss
,
T.
Otsu
,
Y.
Kobayashi
, and
S.
Shin
, “
Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability
,”
Rev. Sci. Instrum.
85
,
123904
(
2014
).
30.
Y.
Yang
,
T.
Tang
,
S.
Duan
,
C.
Zhou
,
D.
Hao
, and
W.
Zhang
, “
A time- and angle-resolved photoemission spectroscopy with probe photon energy up to 6.7 eV
,”
Rev. Sci. Instrum.
90
,
063905
(
2019
).
31.
C.
Bao
,
H.
Zhong
,
S.
Zhou
,
R.
Feng
,
Y.
Wang
, and
S.
Zhou
, “
Ultrafast time- and angle-resolved photoemission spectroscopy with widely tunable probe photon energy of 5.3–7.0 eV for investigating dynamics of three-dimensional materials
,”
Rev. Sci. Instrum.
93
,
013902
(
2022
).
32.
A. K.
Mills
,
S.
Zhdanovich
,
M. X.
Na
,
F.
Boschini
,
E.
Razzoli
,
M.
Michiardi
,
A.
Sheyerman
,
M.
Schneider
,
T. J.
Hammond
,
V.
Süss
,
C.
Felser
,
A.
Damascelli
, and
D. J.
Jones
, “
Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy
,”
Rev. Sci. Instrum.
90
,
083001
(
2019
).
33.
E. J.
Sie
,
T.
Rohwer
,
C.
Lee
, and
N.
Gedik
, “
Time-resolved XUV ARPES with tunable 24–33 eV laser pulses at 30 meV resolution
,”
Nat. Commun.
10
,
3535
(
2019
).
34.
M.
Puppin
,
Y.
Deng
,
C. W.
Nicholson
,
J.
Feldl
,
N. B. M.
Schröter
,
H.
Vita
,
P. S.
Kirchmann
,
C.
Monney
,
L.
Rettig
,
M.
Wolf
, and
R.
Ernstorfer
, “
Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate
,”
Rev. Sci. Instrum.
90
,
023104
(
2019
).
35.
M.
Keunecke
,
C.
Möller
,
D.
Schmitt
,
H.
Nolte
,
G. S. M.
Jansen
,
M.
Reutzel
,
M.
Gutberlet
,
G.
Halasi
,
D.
Steil
,
S.
Steil
, and
S.
Mathias
, “
Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline
,”
Rev. Sci. Instrum.
91
,
063905
(
2020
).
36.
C.
Lee
,
T.
Rohwer
,
E. J.
Sie
,
A.
Zong
,
E.
Baldini
,
J.
Straquadine
,
P.
Walmsley
,
D.
Gardner
,
Y. S.
Lee
,
I. R.
Fisher
, and
N.
Gedik
, “
High resolution time- and angle-resolved photoemission spectroscopy with 11 eV laser pulses
,”
Rev. Sci. Instrum.
91
,
043102
(
2020
).
37.
H.
Iwasawa
,
E. F.
Schwier
,
M.
Arita
,
A.
Ino
,
H.
Namatame
,
M.
Taniguchi
,
Y.
Aiura
, and
K.
Shimada
, “
Development of laser-based scanning µ-ARPES system with ultimate energy and momentum resolutions
,”
Ultramicroscopy
182
,
85
91
(
2017
).
38.
R. Z.
Xu
,
X.
Gu
,
W. X.
Zhao
,
J. S.
Zhou
,
Q. Q.
Zhang
,
X.
Du
,
Y. D.
Li
,
Y. H.
Mao
,
D.
Zhao
,
K.
Huang
,
C. F.
Zhang
,
F.
Wang
,
Z. K.
Liu
,
Y. L.
Chen
, and
L. X.
Yang
, “
Development of a laser-based angle-resolved-photoemission spectrometer with sub-micrometer spatial resolution and high-efficiency spin detection
,”
Rev. Sci. Instrum.
94
,
023903
(
2023
).
39.
F.
Rotermund
and
V.
Petrov
, “
Generation of the fourth harmonic of a femtosecond Ti:sapphire laser
,”
Opt. Lett.
23
,
1040
1042
(
1998
).
40.
A. H.
Firester
,
M. E.
Heller
, and
P.
Sheng
, “
Knife-edge scanning measurements of subwavelength focused light beams
,”
Appl. Opt.
16
,
1971
1974
(
1977
).
41.
J.
Sobota
,
S.-L.
Yang
,
D.
Leuenberger
,
A.
Kemper
,
J.
Analytis
,
I.
Fisher
,
P.
Kirchmann
,
T.
Devereaux
, and
Z.-X.
Shen
, “
Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
195
,
249
257
(
2014
).
42.
A.
Gauthier
,
J. A.
Sobota
,
N.
Gauthier
,
K.-J.
Xu
,
H.
Pfau
,
C. R.
Rotundu
,
Z.-X.
Shen
, and
P. S.
Kirchmann
, “
Tuning time and energy resolution in time-resolved photoemission spectroscopy with nonlinear crystals
,”
J. Appl. Phys.
128
,
093101
(
2020
).
43.
A.
Damascelli
,
Z.
Hussain
, and
Z.-X.
Shen
, “
Angle-resolved photoemission studies of the cuprate superconductors
,”
Rev. Mod. Phys.
75
,
473
541
(
2003
).
44.
H.
Iwasawa
, “
High-resolution angle-resolved photoemission spectroscopy and microscopy
,”
Electron. Struct.
2
,
043001
(
2020
).
45.
A.
Fero
,
C.
Smallwood
,
G.
Affeldt
, and
A.
Lanzara
, “
Impact of work function induced electric fields on laser-based angle-resolved photoemission spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
195
,
237
243
(
2014
).
46.
S.
Hellmann
,
K.
Rossnagel
,
M.
Marczynski-Bühlow
, and
L.
Kipp
, “
Vacuum space-charge effects in solid-state photoemission
,”
Phys. Rev. B
79
,
035402
(
2009
).
47.
J.
Graf
,
S.
Hellmann
,
C.
Jozwiak
,
C. L.
Smallwood
,
Z.
Hussain
,
R. A.
Kaindl
,
L.
Kipp
,
K.
Rossnagel
, and
A.
Lanzara
, “
Vacuum space charge effect in laser-based solid-state photoemission spectroscopy
,”
J. Appl. Phys.
107
,
014912
(
2010
).
48.
S.
Tang
,
C.
Zhang
,
D.
Wong
,
Z.
Pedramrazi
,
H.-Z.
Tsai
,
C.
Jia
,
B.
Moritz
,
M.
Claassen
,
H.
Ryu
,
S.
Kahn
,
J.
Jiang
,
H.
Yan
,
M.
Hashimoto
,
D.
Lu
,
R. G.
Moore
,
C.-C.
Hwang
,
C.
Hwang
,
Z.
Hussain
,
Y.
Chen
,
M. M.
Ugeda
,
Z.
Liu
,
X.
Xie
,
T. P.
Devereaux
,
M. F.
Crommie
,
S.-K.
Mo
, and
Z.-X.
Shen
, “
Quantum spin Hall state in monolayer 1T′-WTe2
,”
Nat. Phys.
13
,
683
687
(
2017
).
49.
Y.
Shi
,
J.
Kahn
,
B.
Niu
,
Z.
Fei
,
B.
Sun
,
X.
Cai
,
B. A.
Francisco
,
D.
Wu
,
Z.-X.
Shen
,
X.
Xu
,
D. H.
Cobden
, and
Y.-T.
Cui
, “
Imaging quantum spin Hall edges in monolayer WTe2
,”
Sci. Adv.
5
,
eaat8799
(
2019
).
50.
P. K.
Das
,
D.
Di Sante
,
F.
Cilento
,
C.
Bigi
,
D.
Kopic
,
D.
Soranzio
,
A.
Sterzi
,
J. A.
Krieger
,
I.
Vobornik
,
J.
Fujii
,
T.
Okuda
,
V. N.
Strocov
,
M. B. H.
Breese
,
F.
Parmigiani
,
G.
Rossi
,
S.
Picozzi
,
R.
Thomale
,
G.
Sangiovanni
,
R. J.
Cava
, and
G.
Panaccione
, “
Electronic properties of candidate type-II Weyl semimetal WTe2. A review perspective
,”
Electron. Struct.
1
,
014003
(
2019
).
51.
I.
Cucchi
,
I.
Gutiérrez-Lezama
,
E.
Cappelli
,
S.
McKeown Walker
,
F. Y.
Bruno
,
G.
Tenasini
,
L.
Wang
,
N.
Ubrig
,
C.
Barreteau
,
E.
Giannini
,
M.
Gibertini
,
A.
Tamai
,
A. F.
Morpurgo
, and
F.
Baumberger
, “
Microfocus laser–angle-resolved photoemission on encapsulated mono-bi-and few-layer 1T-WTe2
,”
Nano Lett.
19
,
554
560
(
2019
).
52.
P.
Hein
,
S.
Jauernik
,
H.
Erk
,
L.
Yang
,
Y.
Qi
,
Y.
Sun
,
C.
Felser
, and
M.
Bauer
, “
Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2
,”
Nat. Commun.
11
,
2613
(
2020
).
53.
M.
Caputo
,
L.
Khalil
,
E.
Papalazarou
,
N.
Nilforoushan
,
L.
Perfetti
,
A.
Taleb-Ibrahimi
,
Q. D.
Gibson
,
R. J.
Cava
, and
M.
Marsi
, “
Dynamics of out-of-equilibrium electron and hole pockets in the type-II Weyl semimetal candidate WTe2
,”
Phys. Rev. B
97
,
115115
(
2018
).
54.
Y.
Wu
,
D.
Mou
,
N. H.
Jo
,
K.
Sun
,
L.
Huang
,
S. L.
Bud’ko
,
P. C.
Canfield
, and
A.
Kaminski
, “
Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2
,”
Phys. Rev. B
94
,
121113
(
2016
).
55.
A.
Grubišić-Čabo
,
M.
Michiardi
,
C. E.
Sanders
,
M.
Bianchi
,
D.
Curcio
,
D.
Phuyal
,
M. H.
Berntsen
,
Q.
Guo
, and
M.
Dendzik
, “
In situ exfoliation method of large-area 2D materials
,”
Adv. Sci.
10
,
2301243
(
2023
).
56.
F. Y.
Bruno
,
A.
Tamai
,
Q. S.
Wu
,
I.
Cucchi
,
C.
Barreteau
,
A.
de la Torre
,
S.
McKeown Walker
,
S.
Riccò
,
Z.
Wang
,
T. K.
Kim
,
M.
Hoesch
,
M.
Shi
,
N. C.
Plumb
,
E.
Giannini
,
A. A.
Soluyanov
, and
F.
Baumberger
, “
Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2
,”
Phys. Rev. B
94
,
121112
(
2016
).
57.
S.
Guo
,
M.
Luo
,
G.
Shi
,
N.
Tian
,
Z.
Huang
,
F.
Yang
,
L.
Ma
,
N. Z.
Wang
,
Q.
Shi
,
K.
Xu
,
Z.
Xu
,
K.
Watanabe
,
T.
Taniguchi
,
X. H.
Chen
,
D.
Shen
,
L.
Zhang
,
W.
Ruan
, and
Y.
Zhang
, “
An ultra-high vacuum system for fabricating clean two-dimensional material devices
,”
Rev. Sci. Instrum.
94
,
013903
(
2023
).
You do not currently have access to this content.