The optical floating zone crystal growth technique is a well-established method for obtaining large, high-purity single crystals. While the floating zone method has been constantly evolving for over six decades, the development of high-pressure (up to 1000 bar) growth systems has only recently been realized via the combination of laser-based heating sources with an all-metal chamber. While our inaugural high-pressure laser floating zone furnace design demonstrated the successful growth of new volatile and metastable phases, the furnace design faces several limitations with imaging quality, heating profile control, and chamber cooling power. Here, we present a second-generation design of the high-pressure laser floating zone furnace, “Laser Optical Kristallmacher II” (LOKII), and demonstrate that this redesign facilitates new advances in crystal growth by highlighting several exemplar materials: α-Fe2O3, β-Ga2O3, and La2CuO4+δ. Notably, for La2CuO4+δ, we demonstrate the feasibility and long-term stability of traveling solvent floating zone growth under a record pressure of 700 bar.

1.
R. E.
De La Rue
and
F. A.
Halden
, “
Arc-image furnace for growth of single crystals
,”
Rev. Sci. Instrum.
31
,
35
38
(
1960
).
2.
J. L.
Schmehr
and
S. D.
Wilson
, “
Active crystal growth techniques for quantum materials
,”
Annu. Rev. Mater. Res.
47
,
153
174
(
2017
).
3.
A. M.
Balbashov
and
S. K.
Egorov
, “
Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating
,”
J. Cryst. Growth
52
,
498
504
(
1981
).
4.
D.
Souptel
,
W.
Löser
, and
G.
Behr
, “
Vertical optical floating zone furnace: Principles of irradiation profile formation
,”
J. Cryst. Growth
300
,
538
550
(
2007
).
5.
J. L.
Schmehr
,
M.
Aling
,
E.
Zoghlin
, and
S. D.
Wilson
, “
High-pressure laser floating zone furnace
,”
Rev. Sci. Instrum.
90
,
043906
(
2019
).
6.
E.
Zoghlin
,
J.
Schmehr
,
C.
Holgate
,
R.
Dally
,
Y.
Liu
,
G.
Laurita
, and
S. D.
Wilson
, “
Evaluating the effects of structural disorder on the magnetic properties of Nd2Zr2O7
,”
Phys. Rev. Mater.
5
,
084403
(
2021
).
7.
Z.
Porter
,
E.
Zoghlin
,
J. L.
Schmehr
, and
S. D.
Wilson
, “
Crystal growth of Sr2IrxRu1−xO4 for x ≤ 0.4
,”
J. Cryst. Growth
578
,
126432
(
2022
).
8.
E.
Zoghlin
,
M. B.
Stone
, and
S. D.
Wilson
, “
Refined spin-wave model and multimagnon bound states in Li2CuO2
,”
Phys. Rev. B
108
(
6
),
064408
(
2023
).
9.
P.
Zhang
,
C.-T.
Chou
,
H.
Yun
,
B. C.
McGoldrick
,
J. T.
Hou
,
K. A.
Mkhoyan
, and
L.
Liu
, “
Control of Néel vector with spin-orbit torques in an antiferromagnetic insulator with tilted easy plane
,”
Phys. Rev. Lett.
129
,
017203
(
2022
).
10.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
, “
Antiferromagnetic spintronics
,”
Nat. Nanotechnol.
11
,
231
241
(
2016
).
11.
D.
Xiong
,
Y.
Jiang
,
K.
Shi
,
A.
Du
,
Y.
Yao
,
Z.
Guo
,
D.
Zhu
,
K.
Cao
,
S.
Peng
,
W.
Cai
,
D.
Zhu
, and
W.
Zhao
, “
Antiferromagnetic spintronics: An overview and outlook
,”
Fundam. Res.
2
,
522
534
(
2022
).
12.
A.
Tasaki
and
S.
Iida
, “
Magnetic properties of synthetic single crystal of α-Fe2O3
,”
J. Phys. Soc. Jpn.
18
,
1148
1154
(
1963
).
13.
P.
Chen
,
N.
Lee
,
S.
McGill
,
S.-W.
Cheong
, and
J. L.
Musfeldt
, “
Magnetic-field-induced color change in α-Fe2O3 single crystals
,”
Phys. Rev. B
85
,
174413
(
2012
).
14.
A. N.
Chiaramonti
,
J. D.
Pless
,
L.
Liu
,
J. P.
Smit
,
C. H.
Lanier
,
K. R.
Poeppelmeier
,
P. C.
Stair
, and
L. D.
Marks
, “
Optical floating zone growth of single crystal α-Fe2O3 from a CaFe4O7-based solvent
,”
Cryst. Growth Des.
4
,
749
753
(
2004
).
15.
A. G.
Crouch
,
K. A.
Hay
, and
R. T.
Pascoe
, “
Magnetite-haematite-liquid equilibrium conditions at oxygen pressures up to 53 bar
,”
Nat. Phys. Sci.
234
(
50
),
132
133
(
1971
).
16.
F.
Walz
, “
The Verwey transition—A topical review
,”
J. Phys.: Condens. Matter
14
,
R285
(
2002
).
17.
Y.
Tomm
,
J. M.
Ko
,
A.
Yoshikawa
, and
T.
Fukuda
, “
Floating zone growth of β-Ga2O3: A new window material for optoelectronic device applications
,”
Sol. Energy Mater. Sol. Cells
66
,
369
374
(
2001
).
18.
E. G.
Víllora
,
K.
Shimamura
,
Y.
Yoshikawa
,
K.
Aoki
, and
N.
Ichinose
, “
Large-size β-Ga2O3 single crystals and wafers
,”
J. Cryst. Growth
270
,
420
426
(
2004
).
19.
N. F.
Santos
,
J.
Rodrigues
,
A. J. S.
Fernandes
,
L. C.
Alves
,
E.
Alves
,
F. M.
Costa
, and
T.
Monteiro
, “
Optical properties of LFZ grown β-Ga2O3:Eu3+ fibres
,”
Appl. Surf. Sci.
258
,
9157
9161
(
2012
).
20.
G. M.
Sheldrick
, “
SHELXT—Integrated space-group and crystal-structure determination
,”
Acta Crystallogr., Sect. A: Found. Adv.
71
,
3
8
(
2015
).
21.
S.
Geller
, “
Crystal structure of β-Ga2O3
,”
J. Chem. Phys.
33
,
676
684
(
1960
).
22.
J. M.
Tarascon
,
L. H.
Greene
,
W. R.
McKinnon
,
G. W.
Hull
, and
T. H.
Geballe
, “
Superconductivity at 40 K in the oxygen-defect perovskites La2−xSrxCuO4−y
,”
Science
235
,
1373
1376
(
1987
).
23.
K.
Oka
and
H.
Unoki
, “
Phase diagram of the La2O3-CuO system and crystal growth of (LaBa)2CuO4
,”
Jpn. J. Appl. Phys.
26
,
L1590
(
1987
).
24.
J. W.
Rogers
,
N. D.
Shinn
,
J. E.
Schirber
,
E. L.
Venturini
,
D. S.
Ginley
, and
B.
Morosin
, “
Identification of a superoxide in superconducting La2CuO4+δ by X-ray photoelectron spectroscopy
,”
Phys. Rev. B
38
,
5021
5024
(
1988
).
25.
M. F.
Hundley
,
J. D.
Thompson
,
S.-W.
Cheong
,
Z.
Fisk
, and
J. E.
Schirber
, “
Phase separation in a high-pressure-oxygenated La2CuO4+δ crystal: Evidence from anisotropic electronic transport and magnetic susceptibility
,”
Phys. Rev. B
41
,
4062
4065
(
1990
).
26.
K. F.
McCarty
,
J. E.
Schirber
,
S.-W.
Cheong
, and
Z.
Fisk
, “
Superconducting La2CuO4+x prepared by oxygenation at high pressure: A Raman-scattering study
,”
Phys. Rev. B
43
,
7883
7890
(
1991
).
27.
T.
Hirayama
,
M.
Nakagawa
,
A.
Sumiyama
, and
Y.
Oda
, “
Superconducting properties in La2CuO4+δ with excess oxygen
,”
Phys. Rev. B
58
,
5856
5861
(
1998
).
28.
J.-C.
Grenier
,
A.
Wattiaux
,
N.
Lagueyte
,
J. C.
Park
,
E.
Marquestaut
,
J.
Etourneau
, and
M.
Pouchard
, “
A new superconductor obtained by electrochemical oxidation of La2CuO4
,”
Physica C
173
,
139
144
(
1991
).
29.
N.
Casañ-Pastor
,
C.
Zinck
,
C. R.
Michel
,
E. M.
Tejada-Rosales
, and
G.
Torres-Gómez
, “
Evidence of oxygen intercalation and mobility at room temperature in oxides: An electrochemical quartz microbalance study of intercalation in La2CuO4
,”
Chem. Mater.
13
,
2118
2126
(
2001
).
30.
P.
Rudolf
and
R.
Schöllhorn
, “
Semiconductor/superconductor transition of La2CuO4 via chemical oxidation at ambient temperature
,”
J. Chem. Soc., Chem. Commun.
1992
,
1158
1160
(
1992
).
31.
C.
Rial
,
E.
Morán
,
M. A.
Alario-Franco
,
U.
Amador
, and
N. H.
Andersen
, “
Room temperature chemically oxidized La2CuO4+y: Phase separation induced by thermal treatment
,”
Physica C
278
,
122
134
(
1997
).
32.
Y. C.
Lan
,
X. L.
Chen
,
Y. G.
Cao
,
J. K.
Huang
,
G. C.
Che
,
G. D.
Liu
,
Y. P.
Xu
,
T.
Xu
, and
J. Y.
Li
, “
Structure and superconducting properties of chemically oxidized La2CuO4+y under hydrothermal conditions
,”
Physica C
336
,
151
156
(
2000
).
33.
E.
Takayama-Muromachi
,
T.
Sasaki
, and
Y.
Matsui
, “
Direct oxidation of La2CuO4 in an aqueous solution of KMnO4
,”
Physica C
207
,
97
101
(
1993
).
34.
B. O.
Wells
,
Y. S.
Lee
,
M. A.
Kastner
,
R. J.
Christianson
,
R. J.
Birgeneau
,
K.
Yamada
,
Y.
Endoh
, and
G.
Shirane
, “
Incommensurate spin fluctuations in high-transition temperature superconductors
,”
Science
277
,
1067
1071
(
1997
).
35.
B.
Lorenz
,
Z. G.
Li
,
T.
Honma
, and
P.-H.
Hor
, “
Intrinsic tendency of electronic phase separation into two superconducting states in La2−xSrxCuO4+δ
,”
Phys. Rev. B
65
,
144522
(
2002
).
36.
L. H.
Liu
,
G. C.
Che
,
J.
Zhao
, and
Z. X.
Zhao
, “
Thermal treatment effect of the oxidized La2CuO4+δ: The access of continuous and discontinuous Tc
,”
Physica C
425
,
37
(
2005
).
37.
H. E.
Mohottala
,
B. O.
Wells
,
J. I.
Budnick
,
W. A.
Hines
,
C.
Niedermayer
,
L.
Udby
,
C.
Bernhard
,
A. R.
Moodenbaugh
, and
F.-C.
Chou
, “
Phase separation in superoxygenated La2−xSrxCuO4+y
,”
Nat. Mater.
5
,
377
382
(
2006
).
38.
F. V.
Kusmartsev
,
D.
Di Castro
,
G.
Bianconi
, and
A.
Bianconi
, “
Transformation of strings into an inhomogeneous phase of stripes and itinerant carriers
,”
Phys. Lett. A
275
,
118
123
(
2000
).
39.
Y. S.
Lee
,
F. C.
Chou
,
A.
Tewary
,
M. A.
Kastner
,
S. H.
Lee
, and
R. J.
Birgeneau
, “
Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La2CuO4+y
,”
Phys. Rev. B
69
,
020502
(
2004
).
40.
M.
Fratini
,
N.
Poccia
,
A.
Ricci
,
G.
Campi
,
M.
Burghammer
,
G.
Aeppli
, and
A.
Bianconi
, “
Scale-free structural organization of oxygen interstitials in La2CuO4+y
,”
Nature
466
,
841
844
(
2010
).
41.
A.
Revcolevschi
and
J.
Jegoudez
, “
Growth of large high-Tc single crystals by the floating zone method: A review
,”
Prog. Mater. Sci.
42
,
321
339
(
1997
).
42.
H. A.
Dabkowska
and
B. D.
Gaulin
, “
Growth of single crystals of selected cuprates by the optical Floating Zone Technique
,”
J. Optoelectron. Adv. Mater.
9
,
1215
1220
(
2007
).
43.
A.
Revcolevschi
,
U.
Ammerahl
, and
G.
Dhalenne
, “
Crystal growth of pure and substituted low-dimensionality cuprates CuGeO3, La2CuO4, SrCuO2, Sr2CuO3 and Sr14Cu24O41 by the floating zone and travelling solvent zone methods
,”
J. Cryst. Growth
198-199
,
593
599
(
1999
).
You do not currently have access to this content.