We present the manufacturing process of a (24.5 × 100) μm2-sized on-chip flow channel intended for flow experiments with normal and superfluid phases of 4He and showcase such a proof-of-concept experiment. This work proves the suitability of chip-to-chip bonding using a thin layer of Parylene-C for cryogenic temperatures as a simpler alternative to other techniques, such as anodic bonding. A monocrystalline silicon chip embeds the etched meander-shaped micro-fluidic channel and a deposited platinum heater and is bonded to a Pyrex glass top. We test the leak tightness of the proposed bonding method for superfluid 4He, reaching temperatures of ≈1.6 K and evaluate its possible effects on flow experiments. We demonstrate that powering an on-chip platinum heater affects the superfluid flow rate by local overheating of a section of the micro-fluidic channel.

1.
A.-G.
Niculescu
,
C.
Chircov
,
A. C.
Birca
, and
A. M.
Grumezescu
, “
Fabrication and applications of microfluidic devices: A review
,”
Int. J. Mol. Sci.
22
,
2011
(
2021
).
2.
P.
Kapitza
, “
Viscosity of liquid helium below the λ-point
,”
Nature
141
,
74
(
1938
).
3.
J. F.
Allen
and
A. D.
Misener
, “
Flow of liquid helium II
,”
Nature
141
,
75
(
1938
).
4.
E.
Varga
,
V.
Vadakkumbatt
,
A. J.
Shook
,
P. H.
Kim
, and
J. P.
Davis
, “
Observation of bistable turbulence in quasi-two-dimensional superflow
,”
Phys. Rev. Lett.
125
,
025301
(
2020
).
5.
R.
Goto
,
S.
Fujiyama
,
H.
Yano
,
Y.
Nago
,
N.
Hashimoto
,
K.
Obara
,
O.
Ishikawa
,
M.
Tsubota
, and
T.
Hata
, “
Turbulence in boundary flow of superfluid 4He triggered by free vortex rings
,”
Phys. Rev. Lett.
100
,
045301
(
2008
).
6.
N.
Hashimoto
,
R.
Goto
,
H.
Yano
,
K.
Obara
,
O.
Ishikawa
, and
T.
Hata
, “
Control of turbulence in boundary layers of superfluid 4He by filtering out remanent vortices
,”
Phys. Rev. B
76
,
020504
(
2007
).
7.
C. S.
Barquist
,
W. G.
Jiang
,
K.
Gunther
,
N.
Eng
,
Y.
Lee
, and
H. B.
Chan
, “
Damping of a microelectromechanical oscillator in turbulent superfluid 4He: A probe of quantized vorticity in the ultralow temperature regime
,”
Phys. Rev. B
101
,
174513
(
2020
).
8.
K.
Schwab
,
N.
Bruckner
, and
R.
Packard
, “
Detection of the Earth’s rotation using superfluid phase coherence
,”
Nature
386
,
585
587
(
1997
).
9.
Y.
Sato
and
R.
Packard
, “
Superfluid helium quantum interference devices: Physics and applications
,”
Rep. Prog. Phys.
75
,
016401
(
2012
).
10.
D. J.
Bishop
and
J. D.
Reppy
, “
Study of the superfluid transition in two-dimensional 4He films
,”
Phys. Rev. Lett.
40
,
1727
1730
(
1978
).
11.
G.
Agnolet
,
D. F.
McQueeney
, and
J. D.
Reppy
, “
Kosterlitz–Thouless transition in helium films
,”
Phys. Rev. B
39
,
8934
8958
(
1989
).
12.
J. M.
Kosterlitz
, “
Superfluidity in thin films of 4He
,”
J. Low Temp. Phys.
201
,
541
584
(
2020
).
13.
F. M.
Gasparini
,
M. O.
Kimball
,
K. P.
Mooney
, and
M.
Diaz-Avila
, “
Finite-size scaling of 4He at the superfluid transition
,”
Rev. Mod. Phys.
80
,
1009
1059
(
2008
).
14.
L. V.
Levitin
,
R. G.
Bennett
,
A.
Casey
,
B.
Cowan
,
J.
Saunders
,
D.
Drung
,
T.
Schurig
, and
J. M.
Parpia
, “
Phase diagram of the topological superfluid 3He confined in a nanoscale slab geometry
,”
Science
340
,
841
844
(
2013
).
15.
X.
Rojas
and
J. P.
Davis
, “
Superfluid nanomechanical resonator for quantum nanofluidics
,”
Phys. Rev. B
91
,
024503
(
2015
).
16.
E.
Varga
,
C.
Undershute
, and
J. P.
Davis
, “
Surface-dominated finite-size effects in nanoconfined superfluid helium
,”
Phys. Rev. Lett.
129
,
145301
(
2022
).
17.
F.
Souris
,
X.
Rojas
,
P. H.
Kim
, and
J. P.
Davis
, “
Ultralow-dissipation superfluid micromechanical resonator
,”
Phys. Rev. Appl.
7
,
044008
(
2017
).
18.
P. J.
Heikkinen
,
A.
Casey
,
L. V.
Levitin
,
X.
Rojas
,
A.
Vorontsov
,
P.
Sharma
,
N.
Zhelev
,
J. M.
Parpia
, and
J.
Saunders
, “
Fragility of surface states in topological superfluid 3He
,”
Nat. Commun.
12
,
1574
(
2021
).
19.
S.
Dimov
,
R. G.
Bennett
,
A.
Córcoles
,
L. V.
Levitin
,
B.
Ilic
,
S. S.
Verbridge
,
J.
Saunders
,
A.
Casey
, and
J. M.
Parpia
, “
Anodically bonded submicron microfluidic chambers
,”
Rev. Sci. Instrum.
81
,
013907
(
2010
).
20.
N.
Zhelev
,
T.
Abhilash
,
R.
Bennett
,
E.
Smith
,
B.
Ilic
,
J.
Parpia
,
L.
Levitin
,
X.
Rojas
,
A.
Casey
, and
J.
Saunders
, “
Fabrication of microfluidic cavities using Si-to-glass anodic bonding
,”
Rev. Sci. Instrum.
89
,
073902
(
2018
).
21.
D.
Lotnyk
,
A.
Eyal
,
N.
Zhelev
,
T. S.
Abhilash
,
E. N.
Smith
,
M.
Terilli
,
J.
Wilson
,
E.
Mueller
,
D.
Einzel
,
J.
Saunders
, and
J. M.
Parpia
, “
Thermal transport of helium-3 in a strongly confining channel
,”
Nat. Commun.
11
,
4843
(
2020
).
22.
N.
Zhelev
,
T. S.
Abhilash
,
E. N.
Smith
,
R. G.
Bennett
,
X.
Rojas
,
L.
Levitin
,
J.
Saunders
, and
J. M.
Parpia
, “
The A–B transition in superfluid helium-3 under confinement in a thin slab geometry
,”
Nat. Commun.
8
,
15963
(
2017
).
23.
V.
Baglin
, “
Cryopumping and vacuum systems
,” arXiv:2006.01574 [physics. ins-det] (
2020
).
You do not currently have access to this content.