A scintillator-based Timepix3 (TPX3) detector was developed to resolve the high-frequency modulation of a neutron beam in both spatial and temporal domains, as required for neutron spin-echo experiments. In this system, light from a scintillator is manipulated with an optical lens and is intensified using an image intensifier, making it detectable with the TPX3 chip. Two different scintillators, namely, 6LiF:ZnS(Ag) and 6LiI:Eu, were investigated to achieve the high resolution needed for spin-echo modulated small-angle neutron scattering (SEMSANS) and modulation of intensity with zero effort (MIEZE). The methodology for conducting event-mode analysis is described, including the optimization of clustering parameters for both scintillators. The detector with both scintillators was characterized with respect to detection efficiency, spatial resolution, count rate, uniformity, and γ-sensitivity. The 6LiF:ZnS(Ag) scintillator-based detector achieved a spatial resolution of 200 μm and a count rate capability of 1.1 × 105 cps, while the 6LiI:Eu scintillator-based detector demonstrated a spatial resolution of 250 μm and a count rate capability exceeding 2.9 × 105 cps. Furthermore, high-frequency intensity modulations in both spatial and temporal domains were successfully observed, confirming the suitability of this detector for SEMSANS and MIEZE techniques, respectively.

1.
F.
Mezei
, “
Neutron spin echo: A new concept in polarized thermal neutron techniques
,”
Z. Phys. A: Hadrons Nucl.
255
,
146
160
(
1972
).
2.
F.
Bloch
, “
Nuclear induction
,”
Phys. Rev.
70
,
460
(
1946
).
3.
W. G.
Bouwman
,
C. P.
Duif
, and
R.
Gähler
, “
Spatial modulation of a neutron beam by Larmor precession
,”
Physica B
404
,
2585
2589
(
2009
).
4.
R.
Gähler
,
R.
Golub
, and
T.
Keller
, “
Neutron resonance spin echo—A new tool for high resolution spectroscopy
,”
Physica B
180–181
,
899
902
(
1992
).
5.
C.
Franz
,
O.
Soltwedel
,
C.
Fuchs
,
S.
Säubert
,
F.
Haslbeck
,
A.
Wendl
,
J. K.
Jochum
,
P.
Böni
, and
C.
Pfleiderer
, “
The longitudinal neutron resonant spin echo spectrometer RESEDA
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
939
,
22
29
(
2019
).
6.
M.
Hino
,
T.
Oda
,
M.
Kitaguchi
,
N. L.
Yamada
,
H.
Sagehashi
,
Y.
Kawabata
, and
H.
Seto
, “
Current status of BL06 beam line for VIN ROSE at J-PARC/MLF
,”
Phys. Procedia
42
,
136
141
(
2013
).
7.
C.
Franz
,
S.
Säubert
,
A.
Wendl
,
F. X.
Haslbeck
,
O.
Soltwedel
,
J. K.
Jochum
,
L.
Spitz
,
J.
Kindervater
,
A.
Bauer
,
P.
Böni
, and
C.
Pfleiderer
, “
MIEZE neutron spin-echo spectroscopy of strongly correlated electron systems
,”
J. Phys. Soc. Jpn.
88
,
081002
(
2019
).
8.
T.
Oda
,
M.
Hino
,
H.
Endo
,
N. L.
Yamada
,
Y.
Kawabata
, and
H.
Seto
, “
Observation of 400-kHz TOF-MIEZE signals
,” in
Proceedings of the International Conference on Neutron Optics (NOP2017) (JPS Journals,
2018
), p.
011029
.
9.
G.
Brandl
,
R.
Georgii
,
W.
Häußler
,
S.
Mühlbauer
, and
P.
Böni
, “
Large scales–long times: Adding high energy resolution to SANS
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
654
,
394
398
(
2011
).
10.
T.
Weber
,
G.
Brandl
,
R.
Georgii
,
W.
Häußler
,
S.
Weichselbaumer
, and
P.
Böni
, “
Monte-Carlo simulations for the optimisation of a TOF-MIEZE instrument
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
713
,
71
75
(
2013
).
11.
S.
Qian
,
C.
Jiang
,
F.
Li
, and
A.
Khaplanov
, “
Conceptual polarization setup at CENTAUR, the SANS/WANS instrument at the Second Target Station of SNS
,”
J. Phys.: Conf. Ser.
2481
,
012002
(
2023
).
12.
Neutron optics Grenoble, https://www.neutronoptics.com/examples (accessed 03 November 2023).
13.
R.
Dadisman
,
J.
Shen
,
H.
Feng
,
L.
Crow
,
C.
Jiang
,
T.
Wang
,
Y.
Zhang
,
H.
Bilheux
,
S. R.
Parnell
,
R.
Pynn
, and
F.
Li
, “
Design and characterization of zero magnetic field chambers for high efficiency neutron polarization transport
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
940
,
174
180
(
2019
).
14.
A.
Tremsin
,
J.
Vallerga
,
J.
McPhate
, and
O.
Siegmund
, “
Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
787
,
20
25
(
2015
).
15.
F.
Li
,
N.-J.
Steinke
,
R. M.
Dalgliesh
,
A. L.
Washington
,
J.
Shen
,
R.
Pynn
, and
S. R.
Parnell
, “
Probing magnetic correlations with spin-echo modulated small angle neutron scattering (SEMSANS)
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
1014
,
165705
(
2021
).
16.
G.
Mauri
,
G.
Sykora
,
E.
Schooneveld
, and
N.
Rhodes
, “
Enhanced position resolution for ZnS:Ag/6LiF wavelength shifting fibre thermal neutron detectors
,”
Eur. Phys. J. Plus
136
,
286
(
2021
).
17.
J.
Schmitt
,
J. J.
Zeeuw
,
J.
Plomp
,
W. G.
Bouwman
,
A. L.
Washington
,
R. M.
Dalgliesh
,
C. P.
Duif
,
M. A.
Thijs
,
F.
Li
,
R.
Pynn
et al, “
Mesoporous silica formation mechanisms probed using combined spin–echo modulated small-angle neutron scattering (SEMSANS) and small-angle neutron scattering (SANS)
,”
ACS Appl. Mater. Interfaces
12
,
28461
28473
(
2020
).
18.
R.
Woracek
,
M.
Krzyzagorski
,
H.
Markötter
,
P. M.
Kadletz
,
N.
Kardjilov
,
I.
Manke
, and
A.
Hilger
, “
Spatially resolved time-of-flight neutron imaging using a scintillator CMOS-camera detector with kHz time resolution
,”
Opt. Express
27
,
26218
26228
(
2019
).
19.
M.
Strobl
,
A.
Hilger
,
M.
Boin
,
N.
Kardjilov
,
R.
Wimpory
,
D.
Clemens
,
M.
Mühlbauer
,
B.
Schillinger
,
T.
Wilpert
,
C.
Schulz
et al, “
Time-of-flight neutron imaging at a continuous source: Proof of principle using a scintillator CCD imaging detector
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
651
,
149
155
(
2011
).
20.
C.-L.
Wang
and
R. A.
Riedel
, “
Uniformity measurements and new positioning algorithms for wavelength-shifting fiber neutron detectors
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
751
,
55
61
(
2014
).
21.
G. J.
Sykora
,
E. M.
Schooneveld
, and
N. J.
Rhodes
, “
Development and future prospects of wavelength shifting fibre detectors at ISIS
,” in
JAEA-Conference: Proceedings of the 21st Meeting of
(
the International Collaboration on Advanced Neutron Sources (ICANS-XXI) (IAEA
,
2015
), pp.
410
420
.
22.
M.
Köhli
,
M.
Klein
,
F.
Allmendinger
,
A.
Perrevoort
,
T.
Schröder
,
N.
Martin
,
C.
Schmidt
, and
U.
Schmidt
, “
CASCADE–a multi-layer Boron-10 neutron detection system
,”
J. Phys.: Conf. Ser.
746
,
012003
(
2016
).
23.
J.
Jochum
,
A.
Wendl
,
T.
Keller
, and
C.
Franz
, “
Neutron MIEZE spectroscopy with focal length tuning
,”
Meas. Sci. Technol.
31
,
035902
(
2019
).
24.
M.
Klein
and
C. J.
Schmidt
, “
CASCADE, neutron detectors for highest count rates in combination with ASIC/FPGA based readout electronics
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
628
,
9
18
(
2011
).
25.
K.
Hirota
,
T.
Shinohara
,
K.
Ikeda
,
K.
Mishima
,
T.
Adachi
,
T.
Morishima
,
S.
Satoh
,
T.
Oku
,
S.
Yamada
,
H.
Sasao
et al, “
Development of a neutron detector based on a position-sensitive photomultiplier
,”
Phys. Chem. Chem. Phys.
7
,
1836
1838
(
2005
).
26.
T.
Oda
,
M.
Hino
,
H.
Endo
,
H.
Seto
, and
Y.
Kawabata
, “
Tuning neutron resonance spin-echo spectrometers with pulsed beams
,”
Phys. Rev. Appl.
14
,
054032
(
2020
).
27.
A.
Spowart
, “
Measurement of the gamma sensitivity of granular and glass neutron scintillators and films
,”
Nucl. Instrum. Methods
82
,
1
6
(
1970
).
28.
A.
Spowart
, “
Measurement of the absolute scintillation efficiency of granular and glass neutron scintillators
,”
Nucl. Instrum. Methods
75
,
35
42
(
1969
).
29.
C. W.
van Eijk
, “
Inorganic scintillators for thermal neutron detection
,”
Radiat. Meas.
38
,
337
342
(
2004
).
30.
M.
Tichý
and
O.
Huml
, “
Comparison of several Li doped scintillators for measurement of neutron and γ radiation integral quantities
,”
Appl. Radiat. Isot.
184
,
110193
(
2022
).
31.
S.-A.
Chong
,
R.
Riedel
,
L.
Funk
,
T.
Visscher
,
C.
Donahue
,
B.
Hannan
,
C.
Montcalm
,
J.
Beal
, and
J.
Hayward
, “
The development of a 6Li-based pixelated neutron detector for neutron reflectometry at the Spallation Neutron Source
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
1039
,
167052
(
2022
).
32.
C.-L.
Wang
and
R. A.
Riedel
, “
Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods
,”
Rev. Sci. Instrum.
87
,
013301
(
2016
).
33.
T.
Poikela
,
J.
Plosila
,
T.
Westerlund
,
M.
Campbell
,
M. D.
Gaspari
,
X.
Llopart
,
V.
Gromov
,
R.
Kluit
,
M.
van Beuzekom
,
F.
Zappon
et al, “
Timepix3: A 65 K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout
,”
J. Instrum.
9
,
C05013
(
2014
).
34.
A.
Losko
,
Y.
Han
,
B.
Schillinger
,
A.
Tartaglione
,
M.
Morgano
,
M.
Strobl
,
J.
Long
,
A.
Tremsin
, and
M.
Schulz
, “
New perspectives for neutron imaging through advanced event-mode data acquisition
,”
Sci. Rep.
11
,
21360
(
2021
).
35.
Edmund
, 50.8 × 50.8 mm2 enhanced aluminum 4–6λ mirror, https://www.edmundoptics.com/p/508-x-508mm-enhanced-aluminum-4-6lambda-mirror/26567 (accessed 03 November 2023).
36.
Navitar
, High speed lens DO-5095, https://navitar.com/products/imaging-optics/high-speed-imaging/high-speed-lenses (accessed 03 November 2023).
37.
D. A.
Orlov
,
J.
DeFazio
,
S. D.
Pinto
,
R.
Glazenborg
, and
E.
Kernen
, “
High quantum efficiency S-20 photocathodes in photon counting detectors
,”
J. Instrum.
11
,
C04015
(
2016
).
38.
F.
Li
,
S.
Parnell
,
W.
Hamilton
,
B.
Maranville
,
T.
Wang
,
R.
Semerad
,
D.
Baxter
,
J.
Cremer
, and
R.
Pynn
, “
Superconducting magnetic Wollaston prism for neutron spin encoding
,”
Rev. Sci. Instrum.
85
,
053303
(
2014
).
39.
Eljen
, Thermal neutron detection, EJ-426HD, http://www.eljentechnology.com/products/neutron-detectors/ej-426 (accessed 03 November 2023).
40.
V.
Nagarkar
,
E.
Ovechkina
,
H.
Bhandari
,
L.
Soundara-Pandian
,
M.
More
,
R.
Riedel
, and
S.
Miller
, “
New structured scintillators for neutron radiography
,”
Phys. Procedia
69
,
161
168
(
2015
).
41.
Radiation monitoring devices (RMD), LNI scintillation film, https://www.rmdinc.com/product-category/scintillator-films/lni-eu-neutron-scintillator/ (accessed 03 November 2023).
42.
J.
Wang
,
N.
Anastasi
,
M.
Marshall
,
S.
Miller
,
M.
Loyd
,
R.
Riedel
,
B.
Singh
, and
V.
Nagarkar
, “
Microcolumnar 6LiI:Eu scintillator films for neutron detection
,” in
Oral Presentation at IEEE NSS/MIC
,
Milan
,
2022
.
43.
C.
Wang
,
L.
Clonts
,
R.
Cooper
,
M.
Crow
,
Y.
Diawara
,
E.
Ellis
,
L.
Funk
,
B.
Hannan
,
J.
Hodges
,
J.
Richards
et al, “
Wavelength-shifting-fiber scintillation detectors for thermal neutron imaging at SNS
,” in
2011 IEEE Nuclear Science Symposium Conference Record
(
IEEE
,
2011
), pp.
4877
4882
.
44.
A.
Hillenbach
,
M.
Engelhardt
,
H.
Abele
, and
R.
Gähler
, “
High flux neutron imaging for high-speed radiography, dynamic tomography and strongly absorbing materials
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
542
,
116
122
(
2005
).
45.
L. A.
Boatner
,
E. P.
Comer
,
G. W.
Wright
,
J. O.
Ramey
,
R. A.
Riedel
,
G. E.
Jellison
, Jr.
, and
J. A.
Kolopus
, “
Improved lithium iodide neutron scintillator with Eu2+ activation II: Activator zoning and concentration effects in Bridgman-grown crystals
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
903
,
8
17
(
2018
).
46.
S.
Safai
,
S.
Lin
, and
E.
Pedroni
, “
Development of an inorganic scintillating mixture for proton beam verification dosimetry
,”
Phys. Med. Biol.
49
,
4637
(
2004
).
47.
V.
Nagarkar
,
S.
Tipnis
,
V.
Gaysinskiy
,
Y.
Klugerman
,
A.
Squillante
, and
G.
Entine
, “
Structured LiI scintillator for thermal neutron imaging
,”
IEEE Trans. Nucl. Sci.
48
,
2330
2334
(
2001
).
48.
K.
Gofron
,
S. A.
Chong
,
F.
Funama
,
S.
Giles
,
G.
Guyotte
,
S.
Lyons
,
B.
Vacaliuc
, and
J.
Wlodek
, “
Deployment of ADTimePix3 areaDetector driver at neutron and X-ray user facilities
,” in
ICALEPCS2023
,
2023
, http://www.jacow.org, p.
MO2AO05
.
49.
G.
Shipman
,
S.
Campbell
,
D.
Dillow
,
M.
Doucet
,
J.
Kohl
,
G.
Granroth
,
R.
Miller
,
D.
Stansberry
,
T.
Proffen
, and
R.
Taylor
, “
Accelerating data acquisition, reduction, and analysis at the spallation neutron source
,” in
2014 IEEE 10th International Conference on E-Science
(
IEEE
,
2014
), Vol.
1
, pp.
223
230
.
50.
C.
Zhang
and
Z.
Morgan
, “
Advanced image reconstruction for MCP detector in event mode
,” in
Smoky Mountains Computational Sciences and Engineering Conference
(
Springer
,
2021
), pp.
383
397
.
51.
C.
Zhang
,
S.-A.
Chong
, and
Z.
Morgan
(
2023
).
“Sophiread,” Zenodo, ornlneutronimaging/mcpevent2hist: Initial alpha release (v2.1.0
), https://doi.org/10.5281/zenodo.7837956
52.
M.
Loyd
and
P.
Shikhaliev
, “
Scintillator-based detectors
,” in
Neutron Detectors for Scattering Applications
(
Springer
,
2023
).
53.
L.
Crow
,
L.
Robertson
,
H.
Bilheux
,
M.
Fleenor
,
E.
Iverson
,
X.
Tong
,
D.
Stoica
, and
W.
Lee
, “
The CG1 instrument development test station at the high flux isotope reactor
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
634
,
S71
S74
(
2011
).
54.
K.
Rossmann
, “
Point spread-function, line spread-function, and modulation transfer function: tools for the study of imaging systems
,”
Radiology
93
,
257
272
(
1969
).
55.
F.
Nemoto
,
N. L.
Yamada
, and
S.
Satoh
, “
Performance of position-sensitive flat-panel and resister type photomultiplier tube detector on neutron reflectometer SOFIA at J-PARC
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
1040
,
166988
(
2022
).
56.
L.
Crow
,
W.
Hamilton
,
J.
Zhao
, and
J.
Robertson
, “
The HB-2D polarized neutron development beamline at the high flux isotope reactor
,”
J. Phys.: Conf. Ser.
746
,
012010
(
2016
).
57.
F.
Li
,
S. R.
Parnell
,
R.
Dalgliesh
,
A.
Washington
,
J.
Plomp
, and
R.
Pynn
, “
Data correction of intensity modulated small angle scattering
,”
Sci. Rep.
9
,
8563
(
2019
).
58.
S.
McKay
, “
Efficiency and field uniformity of a resonant radio-frequency neutron spin flipper
(unpublished)
.
59.
R.
Dadisman
,
D.
Wasilko
,
H.
Kaiser
,
S. J.
Kuhn
,
Z.
Buck
,
J.
Schaeperkoetter
,
L.
Crow
,
R.
Riedel
,
L.
Robertson
,
C.
Jiang
et al, “
Design and performance of a superconducting neutron resonance spin flipper
,”
Rev. Sci. Instrum.
91
,
015117
(
2020
).
You do not currently have access to this content.