Photonic interconnects between quantum systems will play a central role in both scalable quantum computing and quantum networking. Entanglement of remote qubits via photons has been demonstrated in many platforms; however, improving the rate of entanglement generation will be instrumental for integrating photonic links into modular quantum computers. We present an ion trap system that has the highest reported free-space photon collection efficiency for quantum networking. We use a pair of in-vacuum aspheric lenses, each with a numerical aperture of 0.8, to couple 10(1)% of the 493 nm photons emitted from a 138Ba+ ion into single-mode fibers. We also demonstrate that proximal effects of the lenses on the ion position and motion can be mitigated.

1.
P.
Wang
,
C.-Y.
Luan
,
M.
Qiao
,
M.
Um
,
J.
Zhang
,
Y.
Wang
,
X.
Yuan
,
M.
Gu
,
J.
Zhang
, and
K.
Kim
, “
Single ion qubit with estimated coherence time exceeding one hour
,”
Nat. Commun.
12
,
233
(
2021
).
2.
F. A.
An
,
A.
Ransford
,
A.
Schaffer
,
L. R.
Sletten
,
J.
Gaebler
,
J.
Hostetter
, and
G.
Vittorini
, “
High fidelity state preparation and measurement of ion hyperfine qubits with I>12
,”
Phys. Rev. Lett.
129
,
130501
(
2022
).
3.
T.
Harty
,
D.
Allcock
,
C.
Ballance
,
L.
Guidoni
,
H.
Janacek
,
N.
Linke
,
D.
Stacey
, and
D.
Lucas
, “
High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit
,”
Phys. Rev. Lett.
113
,
220501
(
2014
).
4.
J.
Gaebler
,
T.
Tan
,
Y.
Lin
,
Y.
Wan
,
R.
Bowler
,
A.
Keith
,
S.
Glancy
,
K.
Coakley
,
E.
Knill
,
D.
Leibfried
, and
D.
Wineland
, “
High-fidelity universal gate set for 9Be+ ion qubits
,”
Phys. Rev. Lett.
117
,
060505
(
2016
).
5.
C.
Ballance
,
T.
Harty
,
N.
Linke
,
M.
Sepiol
, and
D.
Lucas
, “
High-fidelity quantum logic gates using trapped-ion hyperfine qubits
,”
Phys. Rev. Lett.
117
,
060504
(
2016
).
6.
R.
Srinivas
,
S. C.
Burd
,
H. M.
Knaack
,
R. T.
Sutherland
,
A.
Kwiatkowski
,
S.
Glancy
,
E.
Knill
,
D. J.
Wineland
,
D.
Leibfried
,
A. C.
Wilson
,
D. T. C.
Allcock
, and
D. H.
Slichter
, “
High-fidelity laser-free universal control of trapped ion qubits
,”
Nature
597
,
209
213
(
2021
).
7.
C. R.
Clark
,
H. N.
Tinkey
,
B. C.
Sawyer
,
A. M.
Meier
,
K. A.
Burkhardt
,
C. M.
Seck
,
C. M.
Shappert
,
N. D.
Guise
,
C. E.
Volin
,
S. D.
Fallek
,
H. T.
Hayden
,
W. G.
Rellergert
, and
K. R.
Brown
, “
High-fidelity Bell-state preparation with 40Ca+ optical qubits
,”
Phys. Rev. Lett.
127
,
130505
(
2021
).
8.
C.
Gidney
and
M.
Ekerå
, “
How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits
,”
Quantum
5
,
433
(
2021
).
9.
Y.
Alexeev
,
D.
Bacon
,
K. R.
Brown
,
R.
Calderbank
,
L. D.
Carr
,
F. T.
Chong
,
B.
DeMarco
,
D.
Englund
,
E.
Farhi
,
B.
Fefferman
,
A. V.
Gorshkov
,
A.
Houck
,
J.
Kim
,
S.
Kimmel
,
M.
Lange
,
S.
Lloyd
,
M. D.
Lukin
,
D.
Maslov
,
P.
Maunz
,
C.
Monroe
,
J.
Preskill
,
M.
Roetteler
,
M. J.
Savage
, and
J.
Thompson
, “
Quantum computer systems for scientific discovery
,”
PRX Quantum
2
,
017001
(
2021
).
10.
C.
Monroe
and
J.
Kim
, “
Scaling the ion trap quantum processor
,”
Science
339
,
1164
1169
(
2013
).
11.
M.
Cetina
,
L.
Egan
,
C.
Noel
,
M.
Goldman
,
D.
Biswas
,
A.
Risinger
,
D.
Zhu
, and
C.
Monroe
, “
Control of transverse motion for quantum gates on individually addressed atomic qubits
,”
PRX Quantum
3
,
010334
(
2022
).
12.
D.
Kielpinski
,
C.
Monroe
, and
D. J.
Wineland
, “
Architecture for a large-scale ion-trap quantum computer
,”
Nature
417
,
709
711
(
2002
).
13.
J. M.
Pino
,
J. M.
Dreiling
,
C.
Figgatt
,
J. P.
Gaebler
,
S. A.
Moses
,
M. S.
Allman
,
C. H.
Baldwin
,
M.
Foss-Feig
,
D.
Hayes
,
K.
Mayer
,
C.
Ryan-Anderson
, and
B.
Neyenhuis
, “
Demonstration of the trapped-ion quantum CCD computer architecture
,”
Nature
592
,
209
213
(
2021
).
14.
S. A.
Moses
et al, “
A race-track trapped-ion quantum processor
,”
Phys. Rev. X
13
,
041052
(
2023
).
15.
C.
Monroe
,
R.
Raussendorf
,
A.
Ruthven
,
K. R.
Brown
,
P.
Maunz
,
L.-M.
Duan
, and
J.
Kim
, “
Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects
,”
Phys. Rev. A
89
,
022317
(
2014
).
16.
I. V.
Inlek
,
C.
Crocker
,
M.
Lichtman
,
K.
Sosnova
, and
C.
Monroe
, “
Multispecies trapped-ion node for quantum networking
,”
Phys. Rev. Lett.
118
,
250502
(
2017
).
17.
L.
Feng
,
Y.-Y.
Huang
,
Y.-K.
Wu
,
W.-X.
Guo
,
J.-Y.
Ma
,
H.-X.
Yang
,
L.
Zhang
,
Y.
Wang
,
C.-X.
Huang
,
C.
Zhang
,
L.
Yao
,
B.-X.
Qi
,
Y.-F.
Pu
,
Z.-C.
Zhou
, and
L.-M.
Duan
, “
Realization of a crosstalk-avoided quantum network node using dual-type qubits of the same ion species
,”
Nat. Commun.
15
,
204
(
2024
).
18.
L.
Stephenson
,
D.
Nadlinger
,
B.
Nichol
,
S.
An
,
P.
Drmota
,
T.
Ballance
,
K.
Thirumalai
,
J.
Goodwin
,
D.
Lucas
, and
C.
Ballance
, “
High-rate, high-fidelity entanglement of qubits across an elementary quantum network
,”
Phys. Rev. Lett.
124
,
110501
(
2020
).
19.
K.
Wright
et al, “
Benchmarking an 11-qubit quantum computer
,”
Nat. Commun.
10
,
5464
(
2019
).
20.
H.
Takahashi
,
E.
Kassa
,
C.
Christoforou
, and
M.
Keller
, “
Strong coupling of a single ion to an optical cavity
,”
Phys. Rev. Lett.
124
,
013602
(
2020
).
21.
J.
Schupp
,
V.
Krcmarsky
,
V.
Krutyanskiy
,
M.
Meraner
,
T.
Northup
, and
B.
Lanyon
, “
Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency
,”
PRX Quantum
2
,
020331
(
2021
).
22.
M.
Teller
,
D. A.
Fioretto
,
P. C.
Holz
,
P.
Schindler
,
V.
Messerer
,
K.
Schüppert
,
Y.
Zou
,
R.
Blatt
,
J.
Chiaverini
,
J.
Sage
, and
T. E.
Northup
, “
Heating of a trapped ion induced by dielectric materials
,”
Phys. Rev. Lett.
126
,
230505
(
2021
).
23.
R.
Maiwald
,
A.
Golla
,
M.
Fischer
,
M.
Bader
,
S.
Heugel
,
B.
Chalopin
,
M.
Sondermann
, and
G.
Leuchs
, “
Collecting more than half the fluorescence photons from a single ion
,”
Phys. Rev. A
86
,
043431
(
2012
).
24.
C.-K.
Chou
,
C.
Auchter
,
J.
Lilieholm
,
K.
Smith
, and
B.
Blinov
, “
Note: Single ion imaging and fluorescence collection with a parabolic mirror trap
,”
Rev. Sci. Instrum.
88
,
086101
(
2017
).
25.
G.
Araneda
,
G.
Cerchiari
,
D. B.
Higginbottom
,
P. C.
Holz
,
K.
Lakhmanskiy
,
P.
Obšil
,
Y.
Colombe
, and
R.
Blatt
, “
The Panopticon device: An integrated Paul-trap–hemispherical mirror system for quantum optics
,”
Rev. Sci. Instrum.
91
,
113201
(
2020
).
26.
S.
Gerber
,
D.
Rotter
,
M.
Hennrich
,
R.
Blatt
,
F.
Rohde
,
C.
Schuck
,
M.
Almendros
,
R.
Gehr
,
F.
Dubin
, and
J.
Eschner
, “
Quantum interference from remotely trapped ions
,”
New J. Phys.
11
,
013032
(
2009
).
27.
J.
Béguelin
,
W.
Noell
,
T.
Scharf
, and
R.
Voelkel
, “
Tolerancing the surface form of aspheric microlenses manufactured by wafer-level optics techniques
,”
Appl. Opt.
59
,
3910
3919
(
2020
).
28.
C.
Ohara
,
Ohara Glass Catalog, Available online at:
http://www.oharacorp.com/catalog.html.
29.
D.
Reens
,
M.
Collins
,
J.
Ciampi
,
D.
Kharas
,
B. F.
Aull
,
K.
Donlon
,
C. D.
Bruzewicz
,
B.
Felton
,
J.
Stuart
,
R. J.
Niffenegger
,
P.
Rich
,
D.
Braje
,
K. K.
Ryu
,
J.
Chiaverini
, and
R.
McConnell
, “
High-fidelity ion state detection using trap-integrated avalanche photodiodes
,”
Phys. Rev. Lett.
129
,
100502
(
2022
).
30.
C.
Crocker
,
M.
Lichtman
,
K.
Sosnova
,
A.
Carter
,
S.
Scarano
, and
C.
Monroe
, “
High purity single photons entangled with an atomic qubit
,”
Opt. Express
27
,
28143
28149
(
2019
).
31.
L.
Laughlin
and
J. M.
Sasian
, “
Source modeling and calculation of mask illumination during extreme-ultraviolet lithography condenser design
,” in
International Optical Design Conference 2002
(
SPIE
,
2002
), Vol.
4832
, pp.
283
292
.
32.
C.
Robens
,
S.
Brakhane
,
W.
Alt
,
F.
Kleißler
,
D.
Meschede
,
G.
Moon
,
G.
Ramola
, and
A.
Alberti
, “
High numerical aperture (NA = 092) objective lens for imaging and addressing of cold atoms
,”
Opt. Lett.
42
,
1043
1046
(
2017
).
33.
Corning, Macor: Machinable glass ceramic for industrial applications, available online at: https://www.corning.com/worldwide/en/products/advanced-optics/product-materials/specialty-glass-and-glass-ceramics/glass-ceramics/macor.html (
2012
).
34.
P.
Liebetraut
,
S.
Petsch
,
J.
Liebeskind
, and
H.
Zappe
, “
Elastomeric lenses with tunable astigmatism
,”
Light: Sci. Appl.
2
,
e98
(
2013
).
35.
A. L.
Carter
, “
Design and construction of a three-node quantum network
,” Ph.D. thesis,
University of Maryland
,
College Park
,
2021
.
36.
J. D.
Wong-Campos
,
K. G.
Johnson
,
B.
Neyenhuis
,
J.
Mizrahi
, and
C.
Monroe
, “
High-resolution adaptive imaging of a single atom
,”
Nat. Photonics
10
,
606
610
(
2016
).
37.
P. L. W.
Maunz
, “
High optical access trap 2.0
,”
Technical Report SAND-2016-0796R (Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
,
2016
.
38.
K.
Sosnova
, “
Mixed-species ion chains for quantum networks
,” Ph.D. thesis,
University of Maryland
,
College Park
,
2020
.
39.
X.
Zhao
,
V. L.
Ryjkov
, and
H. A.
Schuessler
, “
Parametric excitations of trapped ions in a linear rf ion trap
,”
Phys. Rev. A
66
,
063414
(
2002
).
40.
Y.
Ibaraki
,
U.
Tanaka
, and
S.
Urabe
, “
Detection of parametric resonance of trapped ions for micromotion compensation
,”
Appl. Phys. B
105
,
219
223
(
2011
).
41.
D.
Wineland
,
C.
Monroe
,
W.
Itano
,
D.
Leibfried
,
B.
King
, and
D.
Meekhof
, “
Experimental issues in coherent quantum-state manipulation of trapped atomic ions
,”
J. Res. Natl. Inst. Stand. Technol.
103
,
259
(
1998
).
42.
M. R.
Dietrich
,
N.
Kurz
,
T.
Noel
,
G.
Shu
, and
B. B.
Blinov
, “
Hyperfine and optical barium ion qubits
,”
Phys. Rev. A
81
,
052328
(
2010
).
43.
D.
Yum
,
D.
De Munshi
,
T.
Dutta
, and
M.
Mukherjee
, “
Optical barium ion qubit
,”
J. Opt. Soc. Am. B
34
,
1632
1636
(
2017
).
44.
J.
Keller
,
H. L.
Partner
,
T.
Burgermeister
, and
T. E.
Mehlstäubler
, “
Precise determination of micromotion for trapped-ion optical clocks
,”
J. Appl. Phys.
118
,
104501
(
2015
).
45.
H.
Häffner
,
C.
Roos
, and
R.
Blatt
, “
Quantum computing with trapped ions
,”
Phys. Rep.
469
,
155
203
(
2008
).
46.
M.
Brownnutt
,
M.
Kumph
,
P.
Rabl
, and
R.
Blatt
, “
Ion-trap measurements of electric-field noise near surfaces
,”
Rev. Mod. Phys.
87
,
1419
(
2015
).
47.
B. E.
King
,
C. S.
Wood
,
C. J.
Myatt
,
Q. A.
Turchette
,
D.
Leibfried
,
W. M.
Itano
,
C.
Monroe
, and
D. J.
Wineland
, “
Cooling the collective motion of trapped ions to initialize a quantum register
,”
Phys. Rev. Lett.
81
,
1525
1528
(
1998
).
48.
S. L.
Zhu
,
C.
Monroe
, and
L. M.
Duan
, “
Trapped ion quantum computation with transverse phonon modes
,”
Phys. Rev. Lett.
97
,
050505
(
2006
).
49.
S.
Crain
,
C.
Cahall
,
G.
Vrijsen
,
E. E.
Wollman
,
M. D.
Shaw
,
V. B.
Verma
,
S. W.
Nam
, and
J.
Kim
, “
High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors
,”
Commun. Phys.
2
,
97
(
2019
).
50.
E.
Arenskötter
,
S.
Kucera
,
O.
Elshehy
,
M.
Bergerhoff
,
M.
Kreis
,
L.
Brunel
, and
J.
Eschner
, “
Full Bell-basis measurement of an atom-photon 2-qubit state and its application for quantum networks
,” arXiv:2301.06091 [quant-ph] (
2023
).
51.
P.
Drmota
,
D.
Main
,
D. P.
Nadlinger
,
B. C.
Nichol
,
M. A.
Weber
,
E. M.
Ainley
,
A.
Agrawal
,
R.
Srinivas
,
G.
Araneda
,
C. J.
Ballance
, and
D. M.
Lucas
, “
Robust quantum memory in a trapped-ion quantum network node
,”
Phys. Rev. Lett.
130
,
090803
(
2023
).
52.
S.
Santra
,
S.
Muralidharan
,
M.
Lichtman
,
L.
Jiang
,
C.
Monroe
, and
V. S.
Malinovsky
, “
Quantum repeaters based on two species trapped ions
,”
New J. Phys.
21
,
073002
(
2019
).
You do not currently have access to this content.