Developing accurate computational models of wildfire dynamics is increasingly important due to the substantial and expanding negative impacts of wildfire events on human health, infrastructure, and the environment. Wildfire spread and emissions depend on a number of factors, including fuel type, environmental conditions (moisture, wind speed, etc.), and terrain/location. However, there currently exist only a few experimental facilities that enable testing of the interplay of these factors at length scales <1 m with carefully controlled and characterized boundary conditions and advanced diagnostics. Experiments performed at such facilities are required for informing and validating computational models. Here, we present the design and characterization of a tilting wind tunnel (the “WindCline”) for studying wildfire dynamics. The WindCline is unique in that the entire tunnel platform is constructed to pivot around a central axis, which enables the sloping of the entire system without compromising the quality of the flow properties. In addition, this facility has a configurable design for the test section and diffuser to accommodate a suite of advanced diagnostics to aid in the characterization of (1) the parameters needed to establish boundary conditions and (2) flame properties and dynamics. The WindCline thus allows for the measurement and control of several critical wildfire variables and boundary conditions, especially at the small length scales important to the development of high-fidelity computational simulations (10–100 cm). Computational modeling frameworks developed and validated under these controlled conditions can expand understanding of fundamental combustion processes, promoting greater confidence when leveraging these processes in complex combustion environments.

1.
S. H.
Doerr
and
C.
Santín
, “
Global trends in wildfire and its impacts: Perceptions versus realities in a changing world
,”
Philos. Trans. R. Soc., B
371
,
20150345
(
2016
).
2.
D. M. J. S.
Bowman
,
G. J.
Williamson
,
J. T.
Abatzoglou
,
C. A.
Kolden
,
M. A.
Cochrane
, and
A. M. S.
Smith
, “
Human exposure and sensitivity to globally extreme wildfire events
,”
Nat. Ecol. Evol.
1
,
0058
(
2017
).
3.
W. M.
Jolly
,
M. A.
Cochrane
,
P. H.
Freeborn
,
Z. A.
Holden
,
T. J.
Brown
,
G. J.
Williamson
, and
D. M. J. S.
Bowman
, “
Climate-induced variations in global wildfire danger from 1979 to 2013
,”
Nat. Commun.
6
,
7537
(
2015
).
4.
M.
Flannigan
,
A. S.
Cantin
,
W. J.
de Groot
,
M.
Wotton
,
A.
Newbery
, and
L. M.
Gowman
, “
Global wildland fire season severity in the 21st century
,”
For. Ecol. Manage.
294
,
54
61
(
2013
).
5.
V. C.
Radeloff
,
D. P.
Helmers
,
H. A.
Kramer
,
M. H.
Mockrin
,
P. M.
Alexandre
,
A.
Bar-Massada
,
V.
Butsic
,
T. J.
Hawbaker
,
S.
Martinuzzi
,
A. D.
Syphard
, and
S. I.
Stewart
, “
Rapid growth of the US wildland-urban interface raises wildfire risk
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
3314
3319
(
2018
).
6.
A.
Bento-Gonçalves
and
A.
Vieira
, “
Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies
,”
Sci. Total Environ.
707
,
135592
(
2020
).
7.
M. J.
Gollner
,
C. H.
Miller
,
W.
Tang
, and
A. V.
Singh
, “
The effect of flow and geometry on concurrent flame spread
,”
Fire Saf. J.
91
,
68
78
(
2017
).
8.
P. H.
Thomas
,
R. W.
Pickard
, and
H. G.
Wraight
, “
On the size and orientation of buoyant diffusion flames and the effect of wind
,”
Fire Saf. Sci.
516
,
1
(
1963
).
9.
N. D.
Burrows
, “
Fire behaviour in jarrah forest fuels: 1. Laboratory experiments
,”
CALMScience
3
,
31
56
(
1999
).
10.
D. X.
Viegas
, “
On the existence of a steady state regime for slope and wind driven fires
,”
Int. J. Wildland Fire
13
,
101
117
(
2004
).
11.
T.
Beer
, “
The interaction of wind and fire
,”
Boundary-Layer Meteorol.
54
,
287
308
(
1991
).
12.
R. C.
Rothermel
and
H. E.
Anderson
,
Fire Spread Characteristics Determined in the Laboratory
(
Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture
,
1966
).
13.
R. C.
Rothermel
,
Airflow characteristics: Wind tunnels and combustion facilities at the Northern Forest Fire Laboratory
(Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, Northern Forest Fire Laboratory,
1967
).
14.
R. M.
Nelson Jr
and
C. W.
Adkins
, “
A dimensionless correlation for the spread of wind-driven fires
,”
Can. J. For. Res.
18
,
391
397
(
1988
).
15.
R. D.
Fleeter
,
F. E.
Fendell
,
L. M.
Cohen
,
N.
Gat
, and
A. B.
Witte
, “
Laboratory facility for wind-aided firespread along a fuel matrix
,”
Combust. Flame
57
,
289
311
(
1984
).
16.
J. J.
Sharples
, “
An overview of mountain meteorological effects relevant to fire behaviour and bushfire risk
,”
Int. J. Wildland Fire
18
,
737
754
(
2009
).
17.
G. J.
Cary
,
R. E.
Keane
,
R. H.
Gardner
,
S.
Lavorel
,
M. D.
Flannigan
,
I. D.
Davies
,
C.
Li
,
J. M.
Lenihan
,
T. S.
Rupp
, and
F.
Mouillot
, “
Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather
,”
Landscape Ecol.
21
,
121
137
(
2006
).
18.
A. L.
Sullivan
,
I. K.
Knight
,
R. J.
Hurley
, and
C.
Webber
, “
A contractionless, low-turbulence wind tunnel for the study of free-burning fires
,”
Exp. Therm. Fluid Sci.
44
,
264
274
(
2013
).
19.
J. S.
Gould
,
A. L.
Sullivan
,
J. S.
Gould
, and
A. L.
Sullivan
, “
Initial growth of fires in eucalypt litter, from ignition to steady-state rate of spread: Laboratory studies
,”
Int. J. Wildland Fire
31
,
163
175
(
2021
).
20.
W. R.
Catchpole
,
E. A.
Catchpole
,
B. W.
Butler
,
R. C.
Rothermel
,
G. A.
Morris
, and
D. J.
Latham
, “
Rate of spread of free-burning fires in woody fuels in a wind tunnel
,”
Combust. Sci. Technol.
131
,
1
37
(
1998
).
21.
W.
Tachajapong
,
J.
Lozano
,
S.
Mahalingam
,
D. R.
Weise
,
W.
Tachajapong
,
J.
Lozano
,
S.
Mahalingam
, and
D. R.
Weise
, “
Experimental modelling of crown fire initiation in open and closed shrubland systems
,”
Int. J. Wildland Fire
23
,
451
462
(
2014
).
22.
G.
Di Cristina
,
S.
Kozhumal
,
A.
Simeoni
,
N.
Skowronski
,
A.
Rangwala
, and
S.
Im
, “
Forced convection fire spread along wooden dowel array
,”
Fire Saf. J.
120
,
103090
(
2021
).
23.
M. J.
Gollner
,
X.
Huang
,
J.
Cobian
,
A. S.
Rangwala
, and
F. A.
Williams
, “
Experimental study of upward flame spread of an inclined fuel surface
,”
Proc. Combust. Inst.
34
,
2531
2538
(
2013
).
24.
J.-L.
Dupuy
,
J.
Maréchal
,
D.
Portier
, and
J.-C.
Valette
, “
The effects of slope and fuel bed width on laboratory fire behaviour
,”
Int. J. Wildland Fire
20
,
272
288
(
2011
).
25.
Y.
Zhang
,
W.
Zhang
,
Y.
Lin
,
Y.
Chen
, and
K.
Li
, “
Flame attachment effect on the distributions of flow, temperature and heat flux of inclined fire plume
,”
Int. J. Heat Mass Transfer
174
,
121313
(
2021
).
26.
D. J.
Gorham
,
R.
Hakes
,
A. V.
Singh
,
J.
Forthofer
,
J.
Cohen
,
S.
McAllister
,
M. A.
Finney
, and
M. J.
Gollner
, “
Studying wildland fire spread using stationary fires
,” in
Advances in Forest Fire Research
(
Imprensa da Universidade de Coimbra
,
2014
), pp.
422
433
.
27.
Y.
Huang
,
L.
Hu
,
Y.
Ma
,
N.
Zhu
,
Y.
Chen
,
J.
Wahlqvist
,
M.
Mcnamee
, and
P.
van Hees
, “
Experimental study of flame spread over thermally-thin inclined fuel surface and controlling heat transfer mechanism under concurrent wind
,”
Int. J. Therm. Sci.
165
,
106936
(
2021
).
28.
Y.
Lu
,
X.
Huang
,
L.
Hu
, and
C.
Fernandez-Pello
, “
The interaction between fuel inclination and horizontal wind: Experimental study using thin wire
,”
Proc. Combust. Inst.
37
,
3809
3816
(
2019
).
29.
J. M. C.
Mendes-Lopes
,
J. M. P.
Ventura
, and
J. M. P.
Amaral
, “
Flame characteristics, temperature–time curves, and rate of spread in fires propagating in a bed of Pinus pinaster needles
,”
Int. J. Wildland Fire
12
,
67
84
(
2003
).
30.
Y.
Lin
,
L.
Hu
,
X.
Zhang
, and
Y.
Chen
, “
Experimental study of pool fire behaviors with nearby inclined surface under cross flow
,”
Process Saf. Environ. Prot.
148
,
93
103
(
2021
).
31.
D. X.
Viegas
and
L. P. C.
Neto
, “
Wall shear-stress as a parameter to correlate the rate of spread of a wind induced forest fire
,”
Int. J. Wildland Fire
1
,
177
188
(
1991
).
32.
D. R.
Weise
, Tilting Wind Tunnel for Fire Behavior Studies, Forest Service Research Note (Final) (Forest Service, Berkeley, CA (United States). Pacific Southwest Forest and Range Experiment Station (
1994
).
33.
X.
Ju
,
X.
Ren
,
E.
Sluder
,
L.
Yang
, and
M. J.
Gollner
, “
Flame attachment and downstream heating effect of inclined line fires
,”
Combust. Flame
240
,
112004
(
2022
).
34.
M.
Heck
, “
The influence of wind on the structure of inclined flames
,” M.S. thesis,
University of Maryland
,
College Park
,
2020
.
35.
J. H.
Bell
and
R. D.
Mehta
, “
Contraction Design for Small Low-Speed Wind Tunnels
,” Report No. NASA-CR-177488 (NASA,
1988
).
36.
B.
Wieneke
, “
PIV uncertainty quantification from correlation statistics
,”
Meas. Sci. Technol.
26
,
074002
(
2015
).
37.
L.
Audouin
,
G.
Kolb
,
J. L.
Torero
, and
J. M.
Most
, “
Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings
,”
Fire Saf. J.
24
,
167
187
(
1995
).
38.
W.
Tang
,
D. J.
Gorham
,
M. A.
Finney
,
S.
Mcallister
,
J.
Cohen
,
J.
Forthofer
, and
M. J.
Gollner
, “
An experimental study on the intermittent extension of flames in wind-driven fires
,”
Fire Saf. J.
91
,
742
748
(
2017
).
39.
W.
Tang
,
C. H.
Miller
, and
M. J.
Gollner
, “
Local flame attachment and heat fluxes in wind-driven line fires
,”
Proc. Combust. Inst.
36
,
3253
3261
(
2017
).
40.
X.
Ju
,
M. J.
Gollner
,
Y.
Wang
,
W.
Tang
,
K.
Zhao
,
X.
Ren
, and
L.
Yang
, “
Downstream radiative and convective heating from methane and propane fires with cross wind
,”
Combust. Flame
204
,
1
12
(
2019
).
41.
X.
Ren
,
X.
Ju
, and
M. J.
Gollner
, “
Effect of freestream turbulence on the structure of boundary-layer flames
,”
Combust. Flame
236
,
111750
(
2022
).
42.
Y.
Chen
,
L.
Hu
,
C.
Kuang
,
X.
Zhang
,
Y.
Lin
, and
X.
Zhong
, “
Flame interaction and tilting behavior of two tandem adjacent hydrocarbon turbulent diffusion flames in crosswind: An experimental quantification and characterization
,”
Fuel
290
,
119930
(
2021
).
43.
X.
Ren
,
E. T.
Sluder
,
M. V.
Heck
,
T. P.
Grumstrup
,
M. A.
Finney
,
S. A.
Mäkiharju
, and
M. J.
Gollner
, “
Scaling analysis of downstream heating and flow dynamics of fires over an inclined surface
,”
Combust. Flame
242
,
112203
(
2022
).
44.
I.
Coddington
,
N.
Newbury
, and
W.
Swann
, “
Dual-comb spectroscopy
,”
Optica
3
,
414
426
(
2016
).
45.
T.
Ideguchi
, “
Dual-comb spectroscopy
,”
Opt. Photonics News
28
,
32
39
(
2017
).
46.
P. J.
Schroeder
,
A. S.
Makowiecki
,
M. A.
Kelley
,
R. K.
Cole
,
N. A.
Malarich
,
R. J.
Wright
,
J. M.
Porter
, and
G. B.
Rieker
, “
Temperature and concentration measurements in a high-pressure gasifier enabled by cepstral analysis of dual frequency comb spectroscopy
,”
Proc. Combust. Inst.
38
,
1561
1569
(
2021
).
47.
T. W.
Hänsch
, “
Nobel Lecture: Passion for precision
,”
Rev. Mod. Phys.
78
,
1297
1309
(
2006
).
48.
J. L.
Hall
, “
Nobel Lecture: Defining and measuring optical frequencies
,”
Rev. Mod. Phys.
78
,
1279
1295
(
2006
).
49.
N.
Picqué
and
T. W.
Hänsch
, “
Frequency comb spectroscopy
,”
Nat. Photonics
13
,
146
157
(
2019
).
50.
P. J.
Schroeder
,
R. J.
Wright
,
S.
Coburn
,
B.
Sodergren
,
K. C.
Cossel
,
S.
Droste
,
G. W.
Truong
,
E.
Baumann
,
F. R.
Giorgetta
,
I.
Coddington
,
N. R.
Newbury
, and
G. B.
Rieker
, “
Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust
,”
Proc. Combust. Inst.
36
,
4565
4573
(
2017
).
51.
K.
Xu
,
L.
Ma
,
J.
Chen
,
X.
Zhao
,
Q.
Wang
,
R.
Kan
,
Z.
Zheng
, and
W.
Ren
, “
Dual-comb spectroscopy for laminar premixed flames with a free-running fiber laser
,”
Combust. Sci. Technol.
194
,
2523
2538
(
2022
).
52.
A.
Schliesser
,
M.
Brehm
,
F.
Keilmann
, and
D. W.
van der Weide
, “
Frequency-comb infrared spectrometer for rapid, remote chemical sensing
,”
Opt. Express
13
,
9029
(
2005
).
53.
A. S.
Makowiecki
,
J. E.
Steinbrenner
,
N. T.
Wimer
,
J. F.
Glusman
,
C. B.
Lapointe
,
J. W.
Daily
,
P. E.
Hamlington
, and
G. B.
Rieker
, “
Dual frequency comb spectroscopy of solid fuel pyrolysis and combustion: Quantifying the influence of moisture content in Douglas fir
,”
Fire Saf. J.
116
,
103185
(
2020
).
54.
D.
Yun
,
R. K.
Cole
,
N. A.
Malarich
,
S. C.
Egbert
,
S. C.
Coburn
,
N.
Hoghooghi
,
J.
Liu
,
J. J.
France
,
M. A.
Hagenmeier
,
K. M.
Rice
,
J. M.
Donbar
, and
G. B.
Rieker
, “
Spatially-resolved mass flux measurements in supersonic environments with dual comb spectroscopy
,”
Optica
9
,
1050
1059
(
2022
).
55.
A.
Makowiecki
,
D. I.
Herman
,
N.
Hoghooghi
,
E. F.
Strong
,
R. K.
Cole
,
G. G.
Ycas
,
F. R.
Giorgetta
,
C. B.
Lapointe
,
J. F.
Glusman
,
J. W.
Daily
,
P. E.
Hamlington
,
N. R.
Newbury
,
I. R.
Coddington
, and
G. B.
Rieker
, “
Mid-infrared dual frequency comb spectroscopy for combustion analysis from 2.8 to 5 μm
,”
Proc. Combust. Inst.
38
,
1627
1635
(
2021
).
56.
C. M.
Smith
and
M. S.
Hoehler
, “
Imaging through fire using narrow-spectrum illumination
,”
Fire Technol.
54
,
1705
1723
(
2018
).
57.
E. R.
Coffey
,
D.
Muvandimwe
,
Y.
Hagar
,
C.
Wiedinmyer
,
E.
Kanyomse
,
R.
Piedrahita
,
K. L.
Dickinson
,
A.
Oduro
, and
M. P.
Hannigan
, “
New emission factors and efficiencies from in-field measurements of traditional and improved cookstoves and their potential implications
,”
Environ. Sci. Technol.
51
,
12508
12517
(
2017
).

Supplementary Material

You do not currently have access to this content.