A nitrogen-vacancy center based scanning magnetic microscope can be used to characterize magnetics at the nanoscale with high sensitivity. This paper reports a field-programmable-gate-array based hardware system that is designed to realize control and signal readout for fast scanning magnetic imaging with a nitrogen-vacancy center. A 10-channel 1 Msps @ 20 bit analog signal generator, a 12-channel 50 ps resolution pulse generator, a 300 Msps @ 16 bit lock-in amplifier with proportional integral derivative control function, and a 4-channel 200 Msps counter are integrated on the platform. A customized acceleration algorithm is realized with the re-configurable field-programmable-gate-array chip to accelerate the imaging speed of the nitrogen-vacancy system, and the experimental results prove that the imaging efficiency can be accelerated by five times compared to the system without the acceleration algorithm. The platform has considerable potential for future applications of fast scanning magnetic imaging.

1.
Y.
Martin
and
H. K.
Wickramasinghe
, “
Magnetic imaging by ‘force microscopy’ with 1000 Å resolution
,”
Appl. Phys. Lett.
50
,
1455
(
1987
).
2.
J. R.
Kirtley
,
M. B.
Ketchen
,
K. G.
Stawiasz
et al, “
High-resolution scanning SQUID microscope
,”
Appl. Phys. Lett.
66
,
1138
(
1995
).
3.
Z. Q.
Qiu
and
S. D.
Bader
, “
Surface magneto-optic Kerr effect
,”
Rev. Sci. Instrum.
71
,
1243
(
2000
).
4.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
et al, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
(
2017
).
5.
D.
Vasyukov
,
Y.
Anahory
,
L.
Embon
et al, “
A scanning superconducting quantum interference device with single electron spin sensitivity
,”
Nat. Nanotechnol.
8
,
639
(
2013
).
6.
A.
Ney
,
T.
Kammermeier
,
V.
Ney
et al, “
Limitations of measuring small magnetic signals of samples deposited on a diamagnetic substrate
,”
J. Magn. Magn. Mater.
320
,
3341
(
2008
).
7.
S. H.
Xie
,
X. Y.
Liu
,
Y. C.
Zhou
,
J. Y.
Li
.
Correlation of magnetic domains and magnetostrictive strains in Terfenol-D via magnetic force microscopy
,”
J. Appl. Phys.
109
,
063911
(
2011
).
8.
T. M.
Nocera
,
Y.
Zeng
,
G.
Agarwal
, “
Distinguishing ferritin from apoferritin using magnetic force microscopy
,”
Nanotechnology
25
,
461001
(
2014
).
9.
M.
Donolato
,
A.
Torti
,
N.
Kostesha
et al, “
Magnetic domain wall conduits for single cell applications
,”
Lab Chip
11
,
2976
(
2011
).
10.
B.
Sepúlveda
,
A.
Calle
,
L. M.
Lechuga
,
G.
Armelles
.
Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor
,”
Opt. Lett.
31
(
8
),
1085
(
2006
).
11.
G.
Balasubramanian
,
I. Y.
Chan
,
R.
Kolesov
et al, “
Nanoscale imaging magnetometry with diamond spins under ambient conditions
,”
Nature
455
,
648
(
2008
).
12.
F.
Fabre
,
A.
Finco
,
A.
Purbawati
et al, “
Characterization of room-temperature in-plane magnetization in thin flakes of CrTe2 with a single-spin magnetometer
,”
Phys. Rev. Mater.
5
,
034008
(
2021
).
13.
L.
Thiel
,
Z.
Wang
,
M. A.
Tschudin
et al, “
Probing magnetism in 2D materials at the nanoscale with single-spin microscopy
,”
Science
364
,
973
(
2019
).
14.
P.
Maletinsky
,
S.
Hong
,
M.
Grinolds
et al, “
A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres
,”
Nat. Nanotechnol.
7
,
320
(
2012
).
15.
M. S.
Grinolds
,
M.
Warner
,
K.
De Greve
et al, “
Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins
.”
Nat. Nanotechnol.
9
,
279
284
(
2014
).
16.
M. L.
Palm
,
W. S.
Huxter
,
P.
Welter
et al, “
Imaging of submicroampere currents in bilayer graphene using a scanning diamond magnetometer
,”
Phys. Rev. Appl.
17
,
054008
(
2022
).
17.
G. D.
Fuchs
,
V. V.
Dobrovitski
,
R.
Hanson
et al, “
Excited-state spectroscopy using single spin manipulation in diamond
,”
Phys. Rev. Lett.
101
,
117601
(
2008
).
18.
A.
Finco
,
A.
Haykal
,
R.
Tanos
et al, “
Imaging non-collinear antiferromagnetic textures via single spin relaxometry
,”
Nat. Commun.
12
,
767
(
2021
).
19.
I.
Gross
,
W.
Akhtar
,
V.
Garcia
et al, “
Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
,”
Nature
549
,
252
(
2017
).
20.
K.
Chang
,
A.
Eichler
,
J.
Rhensius
et al, “
Nanoscale imaging of current density with a single-spin magnetometer
,”
Nano Lett.
17
,
2367
(
2017
).
21.
A.
Jenkins
,
M.
Pelliccione
,
G.
Yu
et al, “
Single-spin sensing of domain-wall structure and dynamics in a thin-film skyrmion host
,”
Phys. Rev. Mater.
3
,
083801
(
2019
).
22.
P.
Wang
,
S.
Chen
,
M.
Guo
et al, “
Nanoscale magnetic imaging of ferritins in a single cell
,”
Sci. Adv.
5
,
eaau8038
(
2019
).
24.
see https://qzabre.com/public/downloads/64ae44cf3a5a8.pdf for Quantum Scanning Microscope Brochure, QZABRE.
25.
see https://www.attocube.com/downloads/attoafmcfm.pdf for attoAFM/CFM Brochure, attocube.
26.
L.
Rondin
,
J.-P.
Tetienne
,
P.
Spinicelli
et al, “
Nanoscale magnetic field mapping with a single spin scanning probe magnetometer
,”
Appl. Phys. Lett.
100
,
153118
(
2012
).
27.
C.
Wang
,
R.
Li
,
B.
Ding
et al, “
Single-spin scanning magnetic microscopy with radial basis function reconstruction algorithm
,”
Appl. Phys. Lett.
116
,
184001
(
2020
).
28.
P.
Welter
,
B. A.
Jósteinsson
,
S.
Josephy
et al, “
Fast scanning nitrogen-vacancy magnetometry by spectrum demodulation
,”
Phys. Rev. Appl.
19
,
034003
(
2023
).
35.
W.
Zhang
,
X.
Qin
,
L.
Wang
et al, “
A fully-adjustable picosecond resolution arbitrary timing generator based on multi-stage time interpolation
,”
Rev. Sci. Instrum.
90
,
114702
(
2019
).
38.
See https://www.thinksrs.com/downloads/pdfs/manuals/SG380m.pdf for Data sheet of SG380 Series, Stanford Research Systems.
39.
X.
Qin
,
M.
Zhu
,
W.
Zhang
et al, “
A high resolution time-to-digital-convertor based on a carry-chain and DSP48E1 adders in a 28-nm field-programmable-gate-array
,”
Rev. Sci. Instrum.
91
,
024708
(
2020
).
40.
See https://download.tek.com/document/SPEC-DMM7510B_Oct_2016_0.pdf for Data sheet of DMM7510, Keithley Instruments.
41.
Z.
Ding
,
Y.
Sun
,
N.
Zheng
et al, “
Observation of uniaxial strain tuned spin cycloid in a freestanding BiFeO3 film
,”
Adv. Funct. Mater.
33
,
2213725
(
2023
).
42.
M.
Wang
,
H.
Sun
,
X.
Ye
et al, “
Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision
,”
Sci. Adv.
8
,
eabn9573
(
2022
).
43.
M.
Guo
,
M.
Wang
,
P.
Wang
et al, “
A flexible nitrogen-vacancy center probe for scanning magnetometry
,”
Rev. Sci. Instrum.
92
,
055001
(
2021
).
44.
P.
Appel
, Ph.D. thesis,
University of Basel
,
2017
.
45.
W. S.
Huxter
,
M. L.
Palm
,
M. L.
Davis
et al, “
Scanning gradiometry with a single spin quantum magnetometer
,”
Nat. Commun.
13
,
3761
(
2022
).
46.
M.
Ku
,
T.
Zhou
,
Q.
Li
et al, “
Imaging viscous flow of the dirac fluid in graphene
,”
Nature
583
,
537
(
2020
).
47.
X.
Qin
,
Z.
Shi
,
Y.
Xie
et al, “
An integrated device with high performance multi-function generators and time-to-digital convertors
,”
Rev. Sci. Instrum.
88
,
014702
(
2017
).
48.
X.
Qin
,
W.
Zhang
,
L.
Wang
et al, “
An FPGA-based hardware platform for the control of spin-based quantum systems
,”
IEEE Trans. Instrum. Meas.
69
(
4
),
1127
(
2020
).
You do not currently have access to this content.