Energy, as an indispensable part of human life, has been a hot topic of research among scholars. The water kinetic energy generated by ocean currents, as a kind of clean energy, has high utilization rate, high power generation potential, and a broad prospect of powering microelectronic devices. As a result, the water kinetic piezoelectric energy harvester (WKPEH) has made significant progress in powering ocean sensors by harvesting ocean currents. This paper provides a comprehensive review of technologies that have been used in recent years to harvest energy from marine fluids using WKPEH. Detailed study of the energy harvesting mechanism of WKPEH. WKPEH can use the flutter-induced vibrations, vortex-induced vibrations, and wake oscillation principles to harvest water kinetic energy. The structural characteristics and output performance of each mechanism are also discussed and compared, and finally, a prospect on WKPEH is given.

1.
D.
Teso-Fz-Betoño
,
I.
Aramendia
,
J.
Martinez-Rico
,
U.
Fernandez-Gamiz
, and
E.
Zulueta
, “
Piezoelectric energy harvesting controlled with an IGBT H-bridge and bidirectional buck-boost for low-cost 4G devices
,”
Sensors
20
(
24
),
7039
(
2020
).
2.
T.
Zhao
,
M.
Xu
,
X.
Xiao
,
Y.
Ma
,
Z.
Li
, and
Z. L.
Wang
, “
Recent progress in blue energy harvesting for powering distributed sensors in ocean
,”
Nano Energy
88
,
106199
(
2021
).
3.
Y.
Gong
,
X.
Shan
,
X.
Luo
,
J.
Pan
,
T.
Xie
, and
Z.
Yang
, “
Direction-adaptive energy harvesting with a guide wing under flow-induced oscillations
,”
Energy
187
,
115983
(
2019
).
4.
S. A.
Vermon
, “
Piezoelectric energy harvesting bending structure and the method of manufacturing thereof
,” U.S. patent 20200220067 (9 July 2020).
5.
M.
Hamlehdar
,
A.
Kasaeian
, and
M. R.
Safaei
, “
Energy harvesting from fluid flow using piezoelectrics: A critical review
,”
Renewable Energy
143
,
1826
1838
(
2019
).
6.
M.
Prauzek
,
J.
Konecny
,
M.
Borova
,
K.
Janosova
,
J.
Hlavica
, and
P.
Musilek
, “
Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review
,”
Sensors
18
(
8
),
2446
(
2018
).
7.
A.
Raj
and
D.
Steingart
, “
Review—Power sources for the internet of things
,”
J. Electrochem. Soc.
165
(
8
),
B3130
B3136
(
2018
).
8.
M.
Aleksandrova
, “
Polymeric seed layer as a simple approach for nanostructuring of Ga-doped ZnO films for flexible piezoelectric energy harvesting
,”
Microelectron. Eng.
233
,
111434
(
2020
).
9.
M.
Febbo
,
S. P.
Machado
, and
S. M.
Osinaga
, “
A novel up-converting mechanism based on double impact for non-linear piezoelectric energy harvesting
,”
J. Phys. D: Appl. Phys.
53
(
47
),
475501
(
2020
).
10.
K. M.
Awan
,
P. A.
Shah
,
K.
Iqbal
,
S.
Gillani
,
W.
Ahmad
, and
Y.
Nam
, “
Underwater wireless sensor networks: A review of recent issues and challenges
,”
Wireless Commun. Mobile Comput.
2019
,
6470359
.
11.
P.
Shivashankar
and
S.
Gopalakrishnan
, “
Review on the use of piezoelectric materials for active vibration, noise, and flow control
,”
Smart Mater. Struct.
29
(
5
),
053001
(
2020
).
12.
G.
Xu
,
W.
Shen
, and
X.
Wang
, “
Applications of wireless sensor networks in marine environment monitoring: A survey
,”
Sensors
14
(
9
),
16932
16954
(
2014
).
13.
S.
Kazemi
,
M.
Nili-Ahmadabadi
,
M. R.
Tavakoli
, and
R.
Tikani
, “
Energy harvesting from longitudinal and transverse motions of sea waves particles using a new waterproof piezoelectric waves energy harvester
,”
Renewable Energy
179
,
528
536
(
2021
).
14.
H.
Song
,
S.
Kim
,
H. S.
Kim
,
D.
Lee
,
C.
Kang
, and
S.
Nahm
, “
Piezoelectric energy harvesting design principles for materials and structures: Material figure-of-merit and self-resonance tuning
,”
Adv. Mater.
32
(
51
),
2002208
(
2020
).
15.
H. J.
Chilabi
,
H.
Salleh
,
W.
Al-Ashtari
,
E. E.
Supeni
,
L.
Abdullah
,
A.
As’sary
,
K. A. M.
Rezali
, and
M. K.
Azwan
, “
Rotational piezoelectric energy harvesting: A comprehensive review on excitation elements, designs, and performances
,”
Energies
14
(
11
),
3098
(
2021
).
16.
G.
Jian
,
Y.
Jiao
,
Q.
Meng
,
H.
Shao
,
F.
Wang
, and
Z.
Wei
, “
3D BaTiO3 flower based polymer composites exhibiting excellent piezoelectric energy harvesting properties
,”
Adv. Mater. Interfaces
7
(
16
),
2000484
(
2020
).
17.
Y.
Guo
,
Q.
Han
,
J.
Wang
, and
X.
Yu
, “
Energy-aware localization algorithm for ocean internet of things
,”
Sens. Rev.
38
(
2
),
129
136
(
2018
).
18.
X.
Jiang
,
H.
Wang
,
X.
Wang
, and
G.
Yuan
, “
Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite
,”
Sol. Energy
224
,
455
461
(
2021
).
19.
J.
Zhao
and
H.
Wang
, “
Mechanistic modeling and economic analysis of piezoelectric energy harvesting potential in airport pavements
,”
Transp. Res. Rec.
2674
(
11
),
64
(
2020
).
20.
M.
Khalid
,
Z.
Ullah
,
N.
Ahmad
,
M.
Arshad
,
B.
Jan
,
Y.
Cao
, and
A.
Adnan
, “
A survey of routing issues and associated protocols in underwater wireless sensor networks
,”
J. Sens.
2017
,
7539751
.
21.
C. V.
Karadag
,
S.
Ertarla
,
N.
Topaloglu
, and
A. F.
Okyar
, “
Optimization of beam profiles for improved piezoelectric energy harvesting efficiency
,”
Struct. Multidiscip. Optim.
63
,
631
(
2020
).
22.
K. N. D. K.
Muhsen
,
R. A. M.
Osman
,
M. S.
Idris
,
N. I. M.
Nadzri
, and
M. H. H.
Jumali
, “
Effect of sintering temperature on (Ba0.85Ca0.15) (SnxZr0.1−xTi0.9)O3 for piezoelectric energy harvesting applications
,”
Ceram. Int.
47
(
9
),
13107
(
2021
).
23.
H.-E.
Lange
et al, “
A piezoelectric energy harvesting concept for an energy-autonomous instrumented total hip replacement
,”
Smart Mater. Struct.
29
(
11
),
115051
(
2020
).
24.
D.-H.
Lee
, “
Direct parallel and hybrid power control scheme of a low-power PV and piezoelectric energy harvesting module
,”
J. Electr. Eng. Technol.
16
,
2045
(
2021
).
25.
Y. Y.
Lim
,
R. V.
Padilla
,
A.
Unger
,
R.
Barraza
,
A. M.
Thabet
, and
I.
Izadgoshasb
, “
A self-tunable wind energy harvester utilising a piezoelectric cantilever beam with bluff body under transverse galloping for field deployment
,”
Energy Convers. Manage.
245
,
114559
(
2021
).
26.
J.
Liu
,
H.
Zuo
,
W.
Xia
,
Y.
Luo
,
D.
Yao
,
Y.
Chen
,
K.
Wang
, and
Q.
Li
, “
Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode
,”
Microelectron. Eng.
231
,
111333
(
2020
).
27.
N.
Sezer
and
M.
Koç
, “
A comprehensive review on the state-of-the-art of piezoelectric energy harvesting
,”
Nano Energy
80
,
105567
(
2020
).
28.
E. L.
Pradeesh
,
S.
Udhayakumar
,
M. G.
Vasundhara
, and
V.
Vadivel Vivek
, “
Vibration based piezoelectric energy harvesting—A review
,”
IOP Conf. Ser.: Mater. Sci. Eng.
995
(
1
),
012007
(
2020
).
29.
L.
Qi
,
P.
Zheng
,
X.
Wu
,
W.
Duan
,
L.
Li
, and
Z.
Zhang
, “
A hybrid wind-photovoltaic power generation system based on the foldable umbrella mechanism for applications on highways
,”
Sol. Energy
208
,
368
378
(
2020
).
30.
A. R.
Voleti
,
S. K.
Singh
,
D. R. S.
Raghuraman
,
N.
Vijayakumar
,
D.
Tanushree
, and
A. S. S.
Balan
, “
Optimizing a piezoelectric energy harvesting system
,”
IOP Conf. Ser.: Mater. Sci. Eng.
1123
(
1
),
012026
(
2021
).
31.
S.
Akkaya Oy
, “
A piezoelectric energy harvesting from the vibration of the airflow around a moving vehicle
,”
Int. Trans. Electr. Energy Syst.
30
(
12
),
e12655
(
2020
).
32.
S. H.
Jo
and
B. D.
Youn
, “
A phononic crystal with differently configured double defects for broadband elastic wave energy localization and harvesting
,”
Crystals
11
(
6
),
643
(
2021
).
33.
W.
Qin
,
P.
Zhou
,
Y.
Qi
, and
T.
Zhang
, “
Lead-free Bi3.15Nd0.85Ti3O12 nanoplates filler-elastomeric polymer composite films for flexible piezoelectric energy harvesting
,”
Micromachines
11
(
11
),
966
(
2020
).
34.
M.
Wang
,
Y.
Xia
,
H.
Pu
,
Y.
Sun
,
J.
Ding
,
J.
Luo
,
S.
Xie
,
Y.
Peng
,
Q.
Zhang
, and
Z.
Li
, “
Piezoelectric energy harvesting from suspension structures with piezoelectric layers
,”
Sensors
20
(
13
),
3755
(
2020
).
35.
H.
Xia
,
Y.
Xia
,
Y.
Ye
,
G.
Shi
,
X.
Wang
, and
Z.
Chen
, “
A self-powered PSSHI and SECE hybrid rectifier for piezoelectric energy harvesting
,”
IEICE Electron. Express
17
(
17
),
20200269
(
2020
).
36.
X.
Liu
,
Y.
Shang
,
J.
Zhang
, and
C.
Zhang
, “
Ionic liquid-assisted 3D printing of self-polarized β-PVDF for flexible piezoelectric energy harvesting
,”
ACS Appl. Mater. Interfaces
13
(
12
),
14334
(
2021
).
37.
S.
Yayla
,
S.
Ayça
, and
M.
Oruç
, “
A case study on piezoelectric energy harvesting with using vortex generator plate modeling for fluids
,”
Renewable Energy
157
,
1243
(
2020
).
38.
Y.
Chen
,
C.
Gu
,
P.
Zhao
, and
W.
Chen
, “
Research on piezoelectric energy harvesting from multi-direction wind-induced vibrations
,”
IOP Conf. Ser.: Earth Environ. Sci.
617
(
1
),
012014
(
2020
).
39.
Z.
Zhang
,
H.
Xiang
, and
L.
Tang
, “
Modeling, analysis and comparison of four charging interface circuits for piezoelectric energy harvesting
,”
Mech. Syst. Signal Process.
152
,
107476
(
2021
).
40.
D.
Zhao
,
J.
Zhou
,
T.
Tan
,
Z.
Yan
,
W.
Sun
,
J.
Yin
, and
W.
Zhang
, “
Hydrokinetic piezoelectric energy harvesting by wake induced vibration
,”
Energy
220
,
119722
(
2021
).
41.
H.-X.
Zou
,
M.
Li
,
L.-C.
Zhao
,
Q.-H.
Gao
,
K.-X.
Wei
,
L.
Zuo
,
F.
Qian
, and
W.-M.
Zhang
, “
A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting
,”
Energy
217
,
119429
(
2021
).
42.
Y.
Wang
,
X.
Liu
,
T.
Chen
,
H.
Wang
,
C.
Zhu
,
H.
Yu
,
L.
Song
,
X.
Pan
,
J.
Mi
,
C.
Lee
, and
M.
Xu
, “
An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition
,”
Nano Energy
90
,
106503
(
2021
).
43.
I.
Aramendia
,
A.
Saenz-Aguirre
,
A.
Boyano
,
U.
Fernandez-Gamiz
, and
E.
Zulueta
, “
Oscillating U-shaped body for underwater piezoelectric energy harvester power optimization
,”
Micromachines
10
(
11
),
737
(
2019
).
44.
B.
Bagchi
,
N. A.
Hoque
,
N.
Janowicz
,
S.
Das
, and
M. K.
Tiwari
, “
Re-useable self-poled piezoelectric/piezocatalytic films with exceptional energy harvesting and water remediation capability
,”
Nano Energy
78
,
105339
(
2020
).
45.
E.
Binyet
,
C.-Y.
Huang
, and
J.-Y.
Chang
, “
Characterization of a vortex-induced vibrating thin plate energy harvester with particle image velocimetry
,”
Microsyst. Technol.
24
(
11
),
4569
4576
(
2018
).
46.
S.
Shahab
and
A.
Erturk
, “
Electrohydroelastic Euler–Bernoulli–Morison model for underwater resonant actuation of macro-fiber composite piezoelectric cantilevers
,”
Smart Mater. Struct.
25
(
10
),
105007
(
2016
).
47.
E.
Binyet
,
C.-Y.
Huang
, and
J.-Y.
Chang
, “
Water tunnel study of a cantilever flexible plate in the wake of a square cylinder
,”
Microsyst. Technol.
26
(
11
),
3435
3449
(
2020
).
48.
E. M.
Binyet
,
J.-Y.
Chang
, and
C.-Y.
Huang
, “
Flexible plate in the wake of a square cylinder for piezoelectric energy harvesting—Parametric study using fluid–structure interaction modeling
,”
Energies
13
(
10
),
2645
(
2020
).
49.
G.
Hao
,
X.
Dong
, and
Z.
Li
, “
A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies
,”
Energy
232
,
121071
(
2021
).
50.
X.
He
,
Q.
Wen
,
Y.
Sun
, and
Z.
Wen
, “
A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester
,”
Nano Energy
40
,
300
307
(
2017
).
51.
E.
Renzi
, “
Hydroelectromechanical modelling of a piezoelectric wave energy converter
,”
Proc. R. Soc. A
472
(
2195
),
20160715
(
2016
).
52.
D.
Kumar
,
S.
Sharma
, and
N.
Khare
, “
Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity
,”
Renewable Energy
163
,
1569
1579
(
2021
).
53.
A.
Venkatalaxmi
,
B. S.
Padmavathi
, and
T.
Amaranath
, “
A general solution of unsteady Stokes equations
,”
Fluid Dyn. Res.
35
(
3
),
229
236
(
2004
).
54.
Q.
Wang
,
H.-X.
Zou
,
L.-C.
Zhao
,
M.
Li
,
K.-X.
Wei
,
L.-P.
Huang
, and
W.-M.
Zhang
, “
A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting
,”
Appl. Phys. Lett.
117
(
4
),
043902
(
2020
).
55.
X.
Li
,
J.
Tao
,
X.
Wang
,
J.
Zhu
,
C.
Pan
, and
Z. L.
Wang
, “
Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy
,”
Adv. Energy Mater.
8
(
21
),
1800705
(
2018
).
56.
J.
Shao
,
M.
Willatzen
, and
Z. L.
Wang
, “
Theoretical modeling of triboelectric nanogenerators (TENGs)
,”
J. Appl. Phys.
128
(
11
),
111101
(
2020
).
57.
M.
Zhang
,
Y.
Liu
, and
Z.
Cao
, “
Modeling of piezoelectric energy harvesting from freely oscillating cylinders in water flow
,”
Math. Probl. Eng.
2014
,
985360
.
58.
C.
Zhao
,
Q.
Zhang
,
W.
Zhang
,
X.
Du
,
Y.
Zhang
,
S.
Gong
,
K.
Ren
,
Q.
Sun
, and
Z. L.
Wang
, “
Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting
,”
Nano Energy
57
,
440
449
(
2019
).
59.
S. L.
Vatanabe
,
A.
Choi
,
C. R.
De Lima
, and
E. C.
Nelli Silva
, “
Design and characterization of a biomimetic piezoelectric pump inspired on group fish swimming effect
,”
J. Intell. Mater. Syst. Struct.
21
(
2
),
133
147
(
2009
).
60.
X. D.
Xie
,
Q.
Wang
, and
N.
Wu
, “
Potential of a piezoelectric energy harvester from sea waves
,”
J. Sound Vib.
333
(
5
),
1421
1429
(
2014
).
61.
Z.
Yao
,
F.
Wang
,
M.
Dreyer
, and
M.
Farhat
, “
Effect of trailing edge shape on hydrodynamic damping for a hydrofoil
,”
J. Fluids Struct.
51
,
189
198
(
2014
).
62.
X. K.
Wang
,
Z.
Hao
, and
S. K.
Tan
, “
Vortex-induced vibrations of a neutrally buoyant circular cylinder near a plane wall
,”
J. Fluids Struct.
39
,
188
204
(
2013
).
63.
D.
Cao
,
X.
Ding
,
X.
Guo
, and
M.
Yao
, “
Design, simulation and experiment for a vortex-induced vibration energy harvester for low-velocity water flow
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
8
(
4
),
1239
1252
(
2020
).
64.
D.-A.
Wang
,
C.-W.
Chao
, and
J.-H.
Chen
, “
A miniature hydro-energy generator based on pressure fluctuation in Kármán vortex street
,”
J. Intell. Mater. Syst. Struct.
24
(
5
),
612
626
(
2012
).
65.
Y.-M.
Na
,
H.-S.
Lee
, and
J.-K.
Park
, “
A study on piezoelectric energy harvester using kinetic energy of ocean
,”
J. Mech. Sci. Technol.
32
(
10
),
4747
4755
(
2018
).
66.
A.
Presas
,
D.
Valentin
,
E.
Egusquiza
,
C.
Valero
, and
U.
Seidel
, “
Influence of the rotation on the natural frequencies of a submerged-confined disk in water
,”
J. Sound Vib.
337
,
161
180
(
2015
).
67.
U.
Latif
,
E.
Ali
,
E.
Uddin
,
Z.
Ali
,
M.
Sajid
,
S. R.
Shah
, and
M. Y.
Younis
, “
Experimental investigation of energy harvesting eel in the wake of bluff body under ocean waves
,”
Proc. Inst. Mech. Eng., Part M
235
(
1
),
81
92
(
2020
).
68.
U.
Latif
,
E.
Uddin
,
M. Y.
Younis
,
J.
Aslam
,
Z.
Ali
,
M.
Sajid
, and
A.
Abdelkefi
, “
Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder
,”
Energy
215
,
119195
(
2021
).
69.
W.
Sun
,
D.
Zhao
,
T.
Tan
,
Z.
Yan
,
P.
Guo
, and
X.
Luo
, “
Low velocity water flow energy harvesting using vortex induced vibration and galloping
,”
Appl. Energy
251
,
113392
(
2019
).
70.
R.
Song
,
C.
Hou
,
C.
Yang
,
X.
Yang
,
Q.
Guo
, and
X.
Shan
, “
Modeling, validation, and performance of two tandem cylinder piezoelectric energy harvesters in water flow
,”
Micromachines
12
(
8
),
872
(
2021
).
71.
D.-A.
Wang
and
N.-Z.
Liu
, “
A shear mode piezoelectric energy harvester based on a pressurized water flow
,”
Sens. Actuators, A
167
(
2
),
449
458
(
2011
).
72.
M.
Mail
,
A.
Klein
,
H.
Bleckmann
,
A.
Schmitz
,
T.
Scherer
,
P. T.
Ruhr
,
G.
Lovric
,
R.
Frohlingsdorf
,
S. N.
Gorb
, and
W.
Barthlott
, “
A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta
,”
Beilstein J. Nanotechnol.
9
,
3039
3047
(
2018
).
73.
M.
Mariello
,
L.
Fachechi
,
F.
Guido
, and
M.
De Vittorio
, “
Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-Ecoflex™
,”
Nano Energy
83
,
105811
(
2021
).
74.
L.
Pernod
,
B.
Lossouarn
,
J.-A.
Astolfi
, and
J.-F.
Deü
, “
Vibration damping of marine lifting surfaces with resonant piezoelectric shunts
,”
J. Sound Vib.
496
,
115921
(
2021
).
75.
F. U.
Qureshi
,
A.
Muhtaroglu
, and
K.
Tuncay
, “
Near-optimal design of scalable energy harvester for underwater pipeline monitoring applications with consideration of impact to pipeline performance
,”
IEEE Sens. J.
17
(
7
),
1981
1991
(
2017
).
76.
M. S.
Woo
,
K. H.
Baek
,
J. H.
Kim
,
S. B.
Kim
,
D.
Song
, and
T. H.
Sung
, “
Relationship between current and impedance in piezoelectric energy harvesting system for water waves
,”
J. Electroceram.
34
(
2–3
),
180
184
(
2014
).
77.
X.
Shan
,
H.
Li
,
Y.
Yang
,
J.
Feng
,
Y.
Wang
, and
T.
Xie
, “
Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration
,”
Energy
172
,
134
140
(
2019
).
78.
X.
Shan
,
H.
Tian
, and
T.
Xie
, “
Enhanced performance of piezoelectric energy harvester through three serial vibrators
,”
J. Intell. Mater. Syst. Struct.
32
(
10
),
1140
1151
(
2020
).
79.
A.-M.
Stamatellou
and
A. I.
Kalfas
, “
Experimental investigation of energy harvesting from swirling flows using a piezoelectric film transducer
,”
Energy Convers. Manage.
171
,
1405
1415
(
2018
).
80.
D. M.
Treichler
and
K. T.
Kiger
, “
Shallow water entry of supercavitating darts
,”
Exp. Fluids
61
(
2
),
31
(
2020
).
81.
P.
Vazquez-Vergara
,
U.
Torres-Herrera
,
L. F.
Olguin
, and
E.
Corvera Poiré
, “
Singular behavior of microfluidic pulsatile flow due to dynamic curving of air-fluid interfaces
,”
Phys. Rev. Fluids
6
(
2
),
024003
(
2021
).
82.
H. D.
Akaydin
,
N.
Elvin
, and
Y.
Andreopoulos
, “
The performance of a self-excited fluidic energy harvester
,”
Smart Mater. Struct.
21
(
2
),
025007
(
2012
).
83.
T.
Beutel
,
S.
Sattler
,
Y.
El Sayed
,
M.
Schwerter
,
M.
Zander
,
S.
Büttgenbach
,
M.
Leester-Schädel
,
R.
Radespiel
,
M.
Sinapius
, and
P.
Wierach
, “
Design of a high-lift experiment in water including active flow control
,”
Smart Mater. Struct.
23
(
7
),
077004
(
2014
).
84.
Y.
Cha
,
W.
Chae
,
H.
Kim
,
H.
Walcott
,
S. D.
Peterson
, and
M.
Porfiri
, “
Energy harvesting from a piezoelectric biomimetic fish tail
,”
Renewable Energy
86
,
449
458
(
2016
).
85.
K. A.
Cunefare
,
E. A.
Skow
,
A.
Erturk
,
J.
Savor
,
N.
Verma
, and
M. R.
Cacan
, “
Energy harvesting from hydraulic pressure fluctuations
,”
Smart Mater. Struct.
22
(
2
),
025036
(
2013
).
86.
O.
De La Torre
,
X.
Escaler
,
E.
Egusquiza
, and
M.
Farhat
, “
Experimental investigation of added mass effects on a hydrofoil under cavitation conditions
,”
J. Fluids Struct.
39
,
173
187
(
2013
).
87.
O.
De La Torre
,
X.
Escaler
,
E.
Egusquiza
, and
M.
Farhat
, “
Experimental mode shape determination of a cantilevered hydrofoil under different flow conditions
,”
Proc. Inst. Mech. Eng., Part C
230
(
19
),
3408
3419
(
2016
).
88.
A.
Ferrari
and
A.
Mittica
, “
Thermodynamic formulation of the constitutive equations for solids and fluids
,”
Energy Convers. Manage.
66
,
77
86
(
2013
).
89.
B.
Bao
,
W.
Chen
, and
Q.
Wang
, “
A piezoelectric hydro-energy harvester featuring a special container structure
,”
Energy
189
,
116261
(
2019
).
90.
G.
Gu
,
G.
Gu
,
W.
Shang
,
Z.
Zhang
,
W.
Zhang
,
C.
Wang
,
D.
Fang
,
G.
Cheng
, and
Z.
Du
, “
The self-powered agricultural sensing system with 1.7 km wireless multichannel signal transmission using a pulsed triboelectric nanogenerator of corn husk composite film
,”
Nano Energy
102
,
107699
(
2022
).
91.
S.
Kim
,
J. Y.
Cho
,
D. H.
Jeon
,
W.
Hwang
,
Y.
Song
,
S. Y.
Jeong
,
S. W.
Jeong
,
H. H.
Yoo
, and
T. H.
Sung
, “
Propeller-based underwater piezoelectric energy harvesting system for an autonomous IoT sensor system
,”
J. Korean Phys. Soc.
76
(
3
),
251
256
(
2020
).
92.
R.
Song
,
X.
Shan
,
F.
Lv
,
J.
Li
, and
T.
Xie
, “
A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water
,”
Appl. Sci.
5
(
4
),
1942
1954
(
2015
).
93.
M.
Gonzalez
,
H. R.
Seren
,
G.
Ham
,
E.
Buzi
,
G.
Bernero
, and
M.
Deffenbaugh
, “
Viscosity and density measurements using mechanical oscillators in oil and gas applications
,”
IEEE Trans. Instrum. Meas.
67
(
4
),
804
810
(
2018
).
94.
M. D.
Guild
,
A.
Alù
, and
M. R.
Haberman
, “
Cloaking of an acoustic sensor using scattering cancellation
,”
Appl. Phys. Lett.
105
(
2
),
023510
(
2014
).
95.
J.
Jonsson
,
S.
Ogden
,
L.
Johansson
,
K.
Hjort
, and
G.
Thornell
, “
Acoustically enriching, large-depth aquatic sampler
,”
Lab Chip
12
(
9
),
1619
1628
(
2012
).
96.
E.
Kanhere
,
N.
Wang
,
A. G.
Kottapalli
,
M.
Asadnia
,
V.
Subramaniam
,
J.
Miao
, and
M.
Triantafyllou
, “
Crocodile-inspired dome-shaped pressure receptors for passive hydrodynamic sensing
,”
Bioinspiration Biomimetics
11
(
5
),
056007
(
2016
).
97.
H. J.
Lee
,
S.
Sherrit
,
L. P.
Tosi
,
P.
Walkemeyer
, and
T.
Colonius
, “
Piezoelectric energy harvesting in internal fluid flow
,”
Sensors
15
(
10
),
26039
26062
(
2015
).
98.
C.
Seeley
,
A.
Coutu
,
C.
Monette
,
B.
Nennemann
, and
H.
Marmont
, “
Characterization of hydrofoil damping due to fluid–structure interaction using piezocomposite actuators
,”
Smart Mater. Struct.
21
(
3
),
035027
(
2012
).
99.
F.
Okosun
,
M.
Celikin
, and
V.
Pakrashi
, “
A numerical model for experimental designs of vibration-based leak detection and monitoring of water pipes using piezoelectric patches
,”
Sensors
20
(
23
),
6708
(
2020
).
100.
A.
Presas
,
Y.
Luo
,
Z.
Wang
,
D.
Valentin
, and
M.
Egusquiza
, “
A review of PZT patches applications in submerged systems
,”
Sensors
18
(
7
),
2251
(
2018
).
101.
R.
Salazar
,
G.
Taylor
,
M. S. U.
Khalid
, and
A.
Abdelkefi
, “
Optimal design and energy harvesting performance of carangiform fish-like robotic system
,”
Smart Mater. Struct.
27
(
7
),
075045
(
2018
).
102.
X.
Shan
,
R.
Song
,
M.
Fan
, and
T.
Xie
, “
Energy-harvesting performances of two tandem piezoelectric energy harvesters with cylinders in water
,”
Appl. Sci.
6
(
8
),
230
(
2016
).
103.
X.
Shang
,
X.
Huang
, and
C.
Yang
, “
Bubble dynamics in a microfluidic chamber under low-frequency actuation
,”
Microfluid. Nanofluid.
20
(
1
),
14
(
2016
).
104.
R.
Song
,
X.
Shan
,
F.
Lv
, and
T.
Xie
, “
A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension
,”
Ceram. Int.
41
,
S768
S773
(
2015
).
105.
X. K.
Wang
,
K.
Gong
,
H.
Liu
,
J. X.
Zhang
, and
S. K.
Tan
, “
Flow around four cylinders arranged in a square configuration
,”
J. Fluids Struct.
43
,
179
199
(
2013
).
106.
X. K.
Wang
,
B. Y.
Su
, and
S. K.
Tan
, “
Experimental study of vortex-induced vibrations of a tethered cylinder
,”
J. Fluids Struct.
34
,
51
67
(
2012
).
You do not currently have access to this content.