Aiming at predefined-time synchronization for chaotic systems, a new predefined-time sliding mode control method is proposed. First, based on the definition of predefined-time stability, a novel predefined-time inequality is proposed, along with a detailed mathematical proof. This inequality differs from existing Lyapunov inequalities and offers greater flexibility. Second, a new sliding mode surface and sliding mode controller are proposed based on this inequality. Since the sliding mode controller introduced in this paper is tunable, the actual convergence time can be adjusted freely within the predefined time. Finally, two sets of numerical simulations demonstrate that the proposed method offers advantages in terms of short synchronization time and high regulatory performance compared to traditional predefined-time sliding mode control, finite-time sliding mode control, and fixed-time sliding mode control.

1.
M.
Zhong
,
C.
Huang
,
J.
Cao
, and
H.
Liu
, “
Adaptive fuzzy echo state network optimal synchronization control of hybrid–order chaotic systems via reinforcement learning
,”
Chaos, Solitons Fractals
181
,
114665
(
2024
).
2.
X.
Li
and
Y.
Zhao
, “
Sliding mode control for linear impulsive systems with matched disturbances
,”
IEEE Trans. Autom. Control
67
(
11
),
6203
6210
(
2022
).
3.
P.
Mukherjee
,
C.
Psomas
, and
I.
Krikidis
, “
Multi-dimensional Lorenz-based chaotic waveforms for wireless power transfer
,”
IEEE Wireless Commun. Lett.
10
(
12
),
2800
2804
(
2021
).
4.
J.
Liu
,
R.
Li
,
J.
Zheng
,
L.
Bu
, and
X.
Liu
, “
Novel flexible fixed-time stability theorem and its application to sliding mode control nonlinear systems
,”
Rev. Sci. Instrum.
95
(
8
),
084701
(
2024
).
5.
Z.
Hua
,
Y.
Zhou
, and
H.
Huang
, “
Cosine-transform-based chaotic system for image encryption
,”
Inf. Sci.
480
,
403
419
(
2019
).
6.
C.
Nwachioma
and
J. H.
Pérez-Cruz
, “
Analysis of a new chaotic system, electronic realization and use in navigation of differential drive mobile robot
,”
Chaos, Solitons Fractals
144
,
110684
(
2021
).
7.
C.-H.
Yang
,
Z.-M.
Ge
,
C.-M.
Chang
, and
S.-Y.
Li
, “
Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control
,”
Nonlinear Anal.: Real World Appl.
11
(
3
),
1977
1985
(
2010
).
8.
Z.
Zhijia
,
H.
Xiuyu
,
R.
Zhigang
, and
W.
Guilin
, “
Boundary adaptive robust control of a flexible riser system with input nonlinearities
,”
IEEE Trans. Syst. Man Cyber. Syst.
49
,
1971
1980
(
2019
).
9.
S.
Wang
, “
A novel memristive chaotic system and its adaptive sliding mode synchronization
,”
Chaos, Solitons Fractals
172
,
113533
(
2023
).
10.
Y.
Qu
,
B.
Zhang
,
H.
Chu
,
H.
Shen
,
J.
Zhang
, and
X.
Yang
, “
Sliding-mode anti-disturbance speed control of permanent magnet synchronous motor based on an advanced reaching law
,”
ISA Trans.
139
,
436
447
(
2023
).
11.
Y.
Xu
,
J.
Yu
,
W.
Li
, and
J.
Feng
, “
Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links
,”
Appl. Math. Comput.
389
,
125498
(
2021
).
12.
M. P.
Aghababa
,
S.
Khanmohammadi
, and
G.
Alizadeh
, “
Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique
,”
Appl. Math. Modell.
35
(
6
),
3080
3091
(
2011
).
13.
M.
Taheri
,
Y.
Chen
,
C.
Zhang
,
Z. R.
Berardehi
,
M.
Roohi
, and
M. H.
Khooban
, “
A finite-time sliding mode control technique for synchronization chaotic fractional-order laser systems with application on encryption of color images
,”
Optik
285
,
170948
(
2023
).
14.
J. K.
Ni
,
C. X.
Liu
,
K.
Liu
, and
L.
Liu
, “
Finite-time sliding mode synchronization of chaotic systems
,”
Chin. Phys. B
23
,
100504
(
2014
).
15.
S.
Lin
and
W.
Zhang
, “
Chattering reduced sliding mode control for a class of chaotic systems
,”
Nonlinear Dyn.
93
,
2273
2282
(
2018
).
16.
K.
Rsetam
,
Z.
Cao
, and
Z.
Man
, “
Design of robust terminal sliding mode control for underactuated flexible joint robot
,”
IEEE Trans. Syst. Man Cyber. Syst.
52
(
7
),
4272
4285
(
2022
).
17.
H.
Hou
,
X.
Yu
,
L.
Xu
,
K.
Rsetam
, and
Z.
Cao
, “
Finite-time continuous terminal sliding mode control of servo motor systems
,”
IEEE Trans. Ind. Electron.
67
(
7
),
5647
5656
(
2020
).
18.
H.
Su
,
R.
Luo
,
J.
Fu
, and
M.
Huang
, “
Fixed time control and synchronization for perturbed chaotic system via nonsingular terminal sliding mode method
,”
J. Comput. Nonlinear Dyn.
16
(
3
),
031004
(
2021
).
19.
M.
Abudusaimaiti
,
A.
Abdurahman
,
H.
Jiang
, and
C.
Hu
, “
Fixed/predefined-time synchronization of fuzzy neural networks with stochastic perturbations
,”
Chaos, Solitons Fractals
154
,
111596
(
2022
).
20.
Q.
Yao
, “
Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control
,”
Chaos, Solitons Fractals
142
,
110372
(
2021
).
21.
X.
Guo
,
G.
Wen
,
Z.
Peng
, and
Y.
Zhang
, “
Global fixed-time synchronization of chaotic systems with different dimensions
,”
J. Franklin Inst.
357
(
2
),
1155
1173
(
2020
).
22.
M.
Shirkavand
and
M.
Pourgholi
, “
Robust fixed-time synchronization of fractional order chaotic using free chattering nonsingular adaptive fractional sliding mode controller design
,”
Chaos, Solitons Fractals
113
,
135
147
(
2018
).
23.
K.
Rsetam
,
Z.
Cao
,
L.
Wang
,
M.
Al-Rawi
, and
Z.
Man
, “
Practically robust fixed-time convergent sliding mode control for underactuated aerial flexible joint robots manipulators
,”
Drones
6
(
12
),
428
(
2022
).
24.
C. A.
Anguiano-Gijón
,
A. J.
Muñoz-Vázquez
,
J. D.
Sánchez-Torres
et al, “
On predefined-time synchronisation of chaotic systems
,”
Chaos, Solitons Fractals
122
,
172
178
(
2019
).
25.
Q.
Li
and
C.
Yue
, “
Predefined-time polynomial-function-based synchronization of chaotic systems via a novel sliding mode control
,”
IEEE Access
8
,
162149
162162
(
2020
).
26.
H.
Xue
and
X.
Liu
, “
A novel fast terminal sliding mode with predefined-time synchronization
,”
Chaos, Solitons Fractals
175
(
2
),
114049
(
2023
).
27.
O.
Martínez-Fuentes
,
J. D.
Díaz-Muñoz
,
A. J.
Muñoz-Vázquez
,
E.
Tlelo-Cuautle
,
G.
Fernández-Anaya
, and
I.
Cruz-Vega
, “
Family of controllers for predefined-time synchronization of Lorenz-type systems and the Raspberry Pi-based implementation
,”
Chaos, Solitons Fractals
179
,
114462
(
2024
).
28.
M.
Zhang
,
H.
Zang
, and
L.
Bai
, “
A new predefined-time sliding mode control scheme for synchronizing chaotic systems
,”
Chaos, Solitons Fractals
164
,
112745
(
2022
).
29.
C.
Jia
,
X.
Liu
, and
J.
Xu
, “
Predefined-time nonsingular sliding mode control and its application to nonlinear systems
,”
IEEE Trans. Ind. Inf.
20
(
4
),
5829
5837
(
2024
).
30.
E. A.
Assali
, “
Predefined-time synchronization of chaotic systems with different dimensions and applications
,”
Chaos, Solitons Fractals
147
,
110988
(
2021
).
31.
Q.
Li
and
C.
Yue
, “
Predefined-time modified function projective synchronization for multiscroll chaotic systems via sliding mode control technology
,”
Complexity
2020
,
6590502
.
32.
S.
Sahoo
and
B. K.
Roy
, “
Design of multi-wing chaotic systems with higher largest Lyapunov exponent
,”
Chaos, Solitons Fractals
157
,
111926
(
2022
).
33.
Y.-J.
Chen
,
H.-G.
Chou
,
W.-J.
Wang
,
S.-H.
Tsai
,
K.
Tanaka
,
H. O.
Wang
, and
K.-C.
Wang
, “
A polynomial-fuzzy-model-based synchronization methodology for the multi-scroll Chen chaotic secure communication system
,”
Eng. Appl. Artif. Intell.
87
,
103251
(
2020
).
34.
Y.
Xu
,
Y.
Lu
,
C.
Xie
, and
Y.
Wang
, “
Impulsive synchronization of Lü chaotic systems via the hybrid controller
,”
Optik
127
(
5
),
2575
2578
(
2016
).
35.
S.
Liu
,
X.
An
,
Y.
Wang
, and
Q.
Shi
, “
Design of a new multi-wing chaotic system and its application in color image encryption
,”
Optik
290
,
171334
(
2023
).
36.
Z.
Sun
,
L.
Si
,
Z.
Shang
, and
J.
Lei
, “
Finite-time synchronization of chaotic PMSM systems for secure communication and parameters identification
,”
Optik
157
,
43
55
(
2018
).
37.
Y.
Song
,
H.
Ye
, and
F. L.
Lewis
, “
Prescribed-time control and its latest developments
,”
IEEE Trans. Syst. Man Cyber. Syst.
53
(
7
),
4102
4116
(
2023
).
You do not currently have access to this content.