High purity silicon is considered as the test mass material for future cryogenic gravitational-wave detectors, in particular Einstein Telescope-low frequency and LIGO Voyager [(LIGO) Laser Interferometer Gravitational-Wave Observatory]. To reduce the thermal noise of the test masses, it is necessary to study the sources of corresponding losses. Mechanical resonators with frequencies 300 Hz–6 kHz are successfully used for studying, for example, losses in optical coatings of the test mass. However, the frequency range of the interferometric gravitational-wave detectors starts at 10 Hz, and the investigation of different dissipation mechanisms for the test masses in the low-frequency region is relevant. We developed a design of a four-spiral mechanical resonator for studying dissipation and noise in the low frequency range. The resonator was fabricated of a 3-in. silicon wafer using an anisotropic wet etching technique. It consists of four spiral cantilevers on a common base, linked together with additional coupling beams for increasing the frequency difference between the resonator normal modes corresponding to the fundamental flexural off-plane mode of a single spiral cantilever. The measured Q-factor of the 62 Hz out-of-phase mode of the four-spiral silicon resonator at room temperature is limited mainly by the thermoelastic loss. At 123 K, the measured Q = (1.5 ± 0.3) × 107. The main contribution to the total loss comes from clamping and surface losses.

1.
G.
Verma
,
K.
Mondal
, and
A.
Gupta
, “
Si-Based MEMS resonant sensor: A review from microfabrication perspective
,”
Microelectron. J.
118
,
105210
(
2021
).
2.
L.
Lin
,
R. T.
Howe
, and
A. P.
Pisano
, “
Microelectromechanical filters for signal processing
,”
J. Microelectromech. Syst.
7
(
3
),
286
294
(
1998
).
3.
G.
Wu
,
J.
Xu
,
E. J.
Ng
, and
W.
Chen
, “
MEMS resonators for frequency reference and timing applications
,”
J. Microelectromech. Syst.
29
(
5
),
1137
1166
(
2020
).
4.
A.
Youssefi
,
S.
Kono
,
M.
Chegnizadeh
, and
T. J.
Kippenberg
, “
A squeezed mechanical oscillator with millisecond quantum decoherence
,”
Nat. Phys.
19
(
11
),
1697
1702
(
2023
).
5.
J.
Aasi
,
B. P.
Abbott
,
R.
Abbott
,
T.
Abbott
,
M. R.
Abernathy
,
K.
Ackley
,
C.
Adams
,
T.
Adams
,
P.
Addesso
,
R. X.
Adhikari
,
V.
Adya
et al, “
Advanced LIGO
,”
Classical Quantum Gravity
32
(
7
),
074001
(
2015
).
6.
M.
Punturo
,
M.
Abernathy
,
F.
Acernese
,
B.
Allen
,
N.
Andersson
,
K.
Arun
,
F.
Barone
,
B.
Barr
,
M.
Barsuglia
,
M.
Beker
,
N.
Beveridge
et al, “
The third generation of gravitational wave observatories and their science reach
,”
Classical Quantum Gravity
27
(
8
),
084007
(
2010
).
7.
E. D.
Hall
, “
Cosmic explorer: A next-generation ground-based gravitational-wave observatory
,”
Galaxies
10
(
4
),
90
(
2022
).
8.
M.
Bailes
,
B. K.
Berger
,
P. R.
Brady
,
M.
Branchesi
,
K.
Danzmann
,
M.
Evans
,
K.
Holley-Bockelmann
,
B. R.
Iyer
,
T.
Kajita
,
S.
Katsanevas
et al, “
Gravitational-wave physics and astronomy in the 2020s and 2030s
,”
Nat. Rev. Phys.
3
,
344
366
(
2021
).
9.
See
https://www.et-gw.eu/
for a detailed description of the Einstein Telescope design
.
10.
A.
Grado
, “
Einstein Telescope, the future generation of ground based gravitational wave detectors
,”
J. Phys.: Conf. Ser.
2429
(
1
),
012041
(
2023
).
11.
R. X.
Adhikari
,
K.
Arai
,
A. F.
Brooks
,
C.
Wipf
,
O.
Aguiar
,
P.
Altin
,
B.
Barr
,
L.
Barsotti
,
R.
Bassiri
,
A.
Bell
et al, “
A cryogenic silicon interferometer for gravitational-wave detection
,”
Classical Quantum Gravity
37
(
16
),
165003
(
2020
).
12.
T.
Middelmann
,
A.
Walkov
,
G.
Bartl
, and
R.
Schödel
, “
Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K
,”
Phys. Rev. B
92
(
17
),
174113
(
2015
).
13.
D. F.
McGuigan
,
C. C.
Lam
,
R. Q.
Gram
,
A. W.
Hoffman
,
D. H.
Douglass
, and
H. W.
Gutche
, “
Measurements of the mechanical Q of single-crystal silicon at low temperatures
,”
J. Low Temp. Phys.
30
,
621
629
(
1978
).
14.
C.
Schwarz
,
D.
Heinert
,
K.
Haughian
,
G.
Hofmann
,
J.
Komma
,
I. W.
Martin
,
P.
Murray
,
S.
Rowan
,
P.
Seidel
, and
R.
Nawrodt
, “
Mechanical spectroscopy of silicon as a low loss material for high precision mechanical and optical experiments
,”
Solid State Phenom.
184
,
443
448
(
2012
).
15.
R.
Nawrodt
,
A.
Zimmer
,
T.
Koettig
,
C.
Schwarz
,
D.
Heinert
,
M.
Hudl
,
R.
Neubert
,
M.
Thürk
,
S.
Nietzsche
,
W.
Vodel
,
P.
Seidel
, and
A.
Tünnermann
, “
High mechanical Q-factor measurements on silicon bulk samples
,”
J. Phys.: Conf. Ser.
122
(
1
),
012008
(
2008
).
16.
K.
Numata
,
G. B.
Bianc
,
M.
Tanaka
,
S.
Otsuka
,
K.
Kawabe
,
M.
Ando
, and
K.
Tsubono
, “
Measurement of the mechanical loss of crystalline samples using a nodal support
,”
Phys. Lett. A
284
(
4
),
162
171
(
2001
).
17.
E.
Cesarini
,
M.
Lorenzini
,
E.
Campagna
,
F.
Martelli
,
F.
Piergiovanni
,
F.
Vetrano
,
G.
Losurdo
, and
G.
Cagnoli
, “
A ‘gentle’ nodal suspension for measurements of the acoustic attenuation in materials
,”
Rev. Sci. Instrum.
80
(
5
),
053904
(
2009
).
18.
G.
Vajente
,
M.
Fazio
,
L.
Yang
,
A.
Gupta
,
A.
Ananyeva
,
G.
Billinsley
, and
C. S.
Menoni
, “
Method for the experimental measurement of bulk and shear loss angles in amorphous thin films
,”
Phys. Rev. D
101
(
4
),
042004
(
2020
).
19.
L. G.
Prokhorov
,
V. P.
Mitrofanov
,
B.
Kamai
,
A.
Markowitz
,
X.
Ni
, and
R. X.
Adhikari
, “
Measurement of mechanical losses in the carbon nanotube black coating of silicon wafers
,”
Classical Quantum Gravity
37
(
1
),
015004
(
2020
).
20.
T. H.
Metcalf
and
X.
Liu
, “
An ultra-high Q silicon compound cantilever resonator for Young’s modulus measurements
,”
Rev. Sci. Instrum.
84
(
7
),
075001
(
2013
).
21.
M.
Molina-Ruiz
,
A.
Markosyan
,
R.
Bassiri
,
M. M.
Fejer
,
M.
Abernathy
,
T. H.
Metcalf
,
X.
Liu
,
G.
Vajente
,
A.
Ananyeva
, and
F.
Hellman
, “
Hydrogen-induced ultralow optical absorption and mechanical loss in amorphous silicon for gravitational-wave detectors
,”
Phys. Rev. Lett.
131
(
25
),
256902
(
2023
).
22.
W.
Wu
,
J.
Liu
,
J.
Fan
,
D.
Peng
,
H.
Liu
, and
L.
Tu
, “
A nano-g micromachined seismic sensor for levelling-free measurements
,”
Sens. Actuators, A
280
,
238
244
(
2018
).
23.
S.
Ghaffari
,
S. A.
Chandorkar
,
S.
Wang
,
E. J.
Ng
,
C. H.
Ahn
,
V.
Hong
,
Y.
Yang
, and
T. W.
Kenny
, “
Quantum limit of quality factor in silicon micro and nano mechanical resonators
,”
Sci. Rep.
3
,
3244
(
2013
).
24.
C.
Zener
, “
Internal friction in solids. I. Theory of internal friction in reeds
,”
Phys. Rev.
52
(
3
),
230
235
(
1937
).
25.
R.
Lifshitz
and
M. L.
Roukes
, “
Thermoelastic damping in micro- and nanomechanical systems
,”
Phys. Rev. B
61
(
8
),
5600
5609
(
2000
).
26.
D. M.
Photiadis
and
J. A.
Judge
, “
Attachment losses of high Q oscillators
,”
Appl. Phys. Lett.
85
(
3
),
482
484
(
2004
).
27.
J.
Rodriguez
,
S. A.
Chandorkar
,
G. M.
Glaze
,
D. D.
Gerrard
,
Y.
Chen
,
D. B.
Heinz
et al, “
Direct detection of anchor damping in MEMS tuning fork resonators
,”
J. Microelectromech. Syst.
27
(
5
),
800
809
(
2018
).
28.
T. H.
Metcalf
,
X.
Liu
, and
M. R.
Abernathy
, “
Improving the mechanical quality factor of ultra-low-loss silicon resonators
,”
J. Appl. Phys.
123
(
23
),
235105
(
2018
).
29.
J.-S.
Chen
,
T.-Y.
Chen
, and
Yu-C.
Chang
, “
Metastructures with double-spiral resonators for low-frequency flexural wave attenuation
,”
J. Appl. Phys.
130
(
1
),
014901
(
2021
).
30.
S. A.
Zotov
,
B. R.
Simon
,
I. P.
Prikhodko
,
A. A.
Trusov
, and
A. M.
Shkel
, “
Quality factor maximization through dynamic balancing of tuning fork resonator
,”
IEEE Sens. J.
14
(
8
),
2706
2714
(
2014
).
31.
D. H.
Zanette
, “
Energy exchange between coupled mechanical oscillators: Linear regimes
,”
J. Phys. Commun.
2
,
095015
(
2018
).
32.
L.
Haiberger
,
D.
Jäger
, and
S.
Schiller
, “
Fabrication and laser control of double-paddle silicon oscillators
,”
Rev. Sci. Instrum.
76
(
4
),
045106
(
2005
).
33.
R. A.
Buser
and
N. F.
de Rooij
, “
Very high Q-factor resonators in monocrystalline silicon
,”
Sens. Actuators, A
21
(
1–3
),
323
327
(
1990
).
34.
I.
Zubel
, “
Anisotropic etching of Si
,”
J. Manuf. Syst.
29
(
9
),
093002
(
2019
).
35.
P.
Pal
and
K.
Sato
, “
A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching
,”
Micro Nano Syst. Lett.
3
,
6
(
2015
).
36.
H. E.
Martínez-Mateo
,
F. J.
De La Hidalga-W
,
C.
Zúñiga
,
M.
Moreno
,
J.
Molina
,
N.
Carlos-Ramírez
, and
W.
Calleja
, “
On the roughness analysis of high-index silicon wafers using KOH-IPA solutions
,”
ECS J. Solid State Sci. Technol.
10
(
1
),
014002
(
2021
).
37.
K. G.
Lyon
,
G. L.
Salinger
,
C. A.
Swenson
, and
G. K.
White
, “
Linear thermal expansion measurements on silicon from 6 to 340 K
,”
J. Appl. Phys.
48
(
3
),
865
868
(
1977
).
38.
P. D.
Desai
, “
Thermodynamic properties of iron and silicon
,”
J. Phys. Chem. Ref. Data
15
(
3
),
967
983
(
1986
).
39.
C. Y.
Ho
,
R. W.
Powell
, and
P. E.
Liley
, “
Thermal conductivity of the elements
,”
J. Phys. Chem. Ref. Data
1
(
2
),
279
421
(
1972
).
40.
H. J.
McSkimin
, “
Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and Germanium single crystals, and for fused silica
,”
J. Appl. Phys.
24
(
8
),
988
997
(
1953
).
41.
R.
Nawrodt
,
C.
Schwarz
,
S.
Kroker
,
I. W.
Martin
,
R.
Bassiri
,
F.
Brückner
,
L.
Cunningham
,
G. D.
Hammond
,
D.
Heinert
,
J.
Hough
et al, “
Investigation of mechanical losses of thin silicon flexures at low temperatures
,”
Classical Quantum Gravity
30
(
11
),
115008
(
2013
).
42.
K.
Numata
,
G. B.
Bianc
,
N.
Ohishi
,
A.
Sekiya
,
S.
Otsuka
,
K.
Kawabe
,
M.
Ando
, and
K.
Tsubono
, “
Measurement of the intrinsic mechanical loss of low-loss samples using a nodal support
,”
Phys. Lett. A
276
(
1–4
),
37
46
(
2000
).
43.
J. P.
Zendri
,
M.
Bignotto
,
M.
Bonaldi
,
M.
Cerdonio
,
L.
Conti
,
L.
Ferrario
,
N.
Liguori
,
A.
Maraner
,
E.
Serra
, and
L.
Taffarello
, “
Loss budget of a setup for measuring mechanical dissipations of silicon wafers between 300 and 4 K
,”
Rev. Sci. Instrum.
79
(
3
),
033901
(
2008
).
You do not currently have access to this content.