Ultra-low magnetic field sensing is emerging as a tool for materials’ diagnostics, particularly for the operando studies of electrochemical systems. A magnetic metrology system having the capability of sensing fields as low as ∼1.88 pT has been setup for such studies using a commercial atomic magnetometer. The magnetometer setup is isolated from environmental perturbations, such as mechanical vibrations, electrical noises, and ambient magnetic fields, in order to measure small signals from the samples under study. Magnetic field measurements on ferromagnetic (permalloy, Ni0.8Fe0.2) thin films, monolayers of MoS2, vanadium doped MoS2, and lithium electro-deposited copper electrodes are performed to demonstrate the sensitivity of the setup. Magnetic field scanning of commercial Li-ion cells has also been performed using this magnetic metrology method, indicating the scope of the setup for operando diagnostics.

1.
H.
Lee
,
T. H.
Shin
,
J.
Cheon
, and
R.
Weissleder
, “
Recent developments in magnetic diagnostic systems
,”
Chem. Rev.
115
(
19
),
10690
10724
(
2015
).
2.
J. C.
Allred
,
R. N.
Lyman
,
T. W.
Kornack
, and
M. V.
Romalis
, “
High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
,”
Phys. Rev. Lett.
89
(
13
),
130801
1308014
(
2002
).
3.
M.
Tatarakis
,
I.
Watts
,
F. N.
Beg
,
E. L.
Clark
,
A. E.
Dangor
,
A.
Gopal
,
M. G.
Haines
,
P. A.
Norreys
,
U.
Wagner
,
M. S.
Wei
,
M.
Zepf
, and
K.
Krushelnick
, “
Measuring huge magnetic fields
,”
Nature
415
(
6869
),
280
415
(
2002
).
4.
J.
Zhang
,
L.
Xu
,
G.
Bian
,
P.
Fan
,
M.
Li
,
W.
Liu
, and
H.
Yuan
, “
Diamond nitrogen-vacancy center magnetometry: Advances and challenges
,” arXiv:2010.10231 [physics.app-ph] (
2020
).
5.
G.
Balasubramanian
,
I. Y.
Chan
,
R.
Kolesov
,
M.
Al-Hmoud
,
J.
Tisler
,
C.
Shin
,
C.
Kim
,
A.
Wojcik
,
P. R.
Hemmer
,
A.
Krueger
,
T.
Hanke
,
A.
Leitenstorfer
,
R.
Bratschitsch
,
F.
Jelezko
, and
J.
Wrachtrup
, “
Nanoscale imaging magnetometry with diamond spins under ambient conditions
,”
Nature
455
(
7213
),
648
651
(
2008
).
6.
J. R.
Maze
,
P. L.
Stanwix
,
J. S.
Hodges
,
S.
Hong
,
J. M.
Taylor
,
P.
Cappellaro
,
L.
Jiang
,
M. V. G.
Dutt
,
E.
Togan
,
A. S.
Zibrov
,
A.
Yacoby
,
R. L.
Walsworth
, and
M. D.
Lukin
, “
Nanoscale magnetic sensing with an individual electronic spin in diamond
,”
Nature
455
(
7213
),
644
647
(
2008
).
7.
F.
Casola
,
T.
Van Der Sar
, and
A.
Yacoby
, “
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
,”
Nat. Rev. Mater.
3
,
17088
(
2018
).
8.
A. J.
Ilott
,
M.
Mohammadi
,
C. M.
Schauerman
,
M. J.
Ganter
, and
A.
Jerschow
, “
Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging
,”
Nat. Commun.
9
(
1
),
1776
(
2018
).
9.
K.
Romanenko
and
A.
Jerschow
, “
Distortion-free inside-out imaging for rapid diagnostics of rechargeable Li-ion cells
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
38
),
18783
18789
(
2019
).
10.
Y.
Hu
,
G. Z.
Iwata
,
L.
Bougas
,
J. W.
Blanchard
,
A.
Wickenbrock
,
G.
Jakob
,
S.
Schwarz
,
C.
Schwarzinger
,
A.
Jerschow
, and
D.
Budker
, “
Rapid online solid-state battery diagnostics with optically pumped magnetometers
,”
App. Sci.
10
(
21
),
7864
(
2020
).
11.
M.
Mohammadi
,
E. V.
Silletta
,
A. J.
Ilott
, and
A.
Jerschow
, “
Diagnosing current distributions in batteries with magnetic resonance imaging
,”
J. Magn. Reson.
309
,
106601
(
2019
).
12.
D.
Budker
and
M.
Romalis
, “
Optical magnetometry
,”
Nat. Phys.
3
(
4
),
227
234
(
2007
).
13.
Y. J.
Kim
and
I.
Savukov
, “
Ultra-sensitive magnetic microscopy with an optically pumped magnetometer
,”
Sci. Rep.
6
(
1
),
24773
24777
(
2016
).
14.
B.
Zhao
,
L.
Li
,
Y.
Zhang
,
J.
Tang
,
Y.
Liu
, and
Y.
Zhai
, “
Optically pumped magnetometers recent advances and applications in biomagnetism: A review
,”
IEEE Sens. J.
23
(
17
),
18949
18962
(
2023
).
15.
M. V.
Romalis
and
H. B.
Dang
, “
Atomic magnetometers for materials characterization
,”
Mater. Today
14
(
6
),
258
262
(
2011
).
16.
H. B.
Dang
,
A. C.
Maloof
, and
M. V.
Romalis
, “
Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer
,”
Appl. Phys. Lett.
97
(
15
),
151110
(
2010
).
17.
N.
Ma
,
L.
Duan
,
D.
Ma
,
L.
Duan
,
J.
Lu
,
B.
Xing
,
J.
Lu
,
J.
Lu
,
B.
Xing
,
B.
Han
,
J.
Li
,
B.
Han
, and
B.
Han
, “
Demonstration of a high-density alkali-metal atomic magnetometer based on the frequency-symmetrical detuning effect of two pumping lights
,”
Opt. Express
30
(
25
),
45930
45941
(
2022
).
18.
Y.
Hu
,
G. Z.
Iwata
,
M.
Mohammadi
,
E. V.
Silletta
,
A.
Wickenbrock
,
J. W.
Blanchard
,
D.
Budker
, and
A.
Jerschow
, “
Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
20
),
10667
10672
(
2020
).
19.
A. M.
Fabricant
,
R.
Picazo-Frutos
,
F.
Teleanu
,
G. J.
Rees
,
R. A.
House
,
P. G.
Bruce
et al, “
Ultralow-field nuclear magnetic resonance for direct nondestructive observation of electrolyte composition in batteries
,”
ChemRxiv
(
2024
).
20.
J. F.
Hoburg
, “
Principles of quasistatic magnetic shielding with cylindrical and spherical shields
,”
IEEE Trans. Electromagn. Compat.
37
(
4
),
574
579
(
1995
).
21.
J. J.
Panda
,
K. R.
Sahoo
,
A.
Praturi
,
A.
Lal
,
N. K.
Viswanathan
,
T. N.
Narayanan
, and
G.
Rajalakshmi
, “
High-sensitivity characterization of ultra-thin atomic layers using spin-Hall effect of light
,”
J. Appl. Phys.
132
(
7
),
075302
(
2022
).
22.
L.
Lin
,
J.
Huang
,
W.
Yu
,
L.
Zhu
,
H.
Tao
,
P.
Wang
, and
Y.
Guo
, “
Electronic structures and magnetic properties of S vacancy and Mn doped monolayer MoS2: A first-principle study
,”
Solid State Commun.
301
,
113702
(
2019
).
23.
K. R.
Sahoo
,
M.
Talluri
,
D.
Maity
,
S.
Mundlia
,
A.
Lal
,
M. S.
Devapriya
,
A.
Haldar
,
C.
Murapaka
, and
T. N.
Narayanan
, “
Monolayer vanadium‐doped tungsten disulfide: A room‐temperature dilute magnetic semiconductor
,”
arXiv:2411.09277v1
(
2024
).
24.
D.
Maity
,
R.
Sharma
,
K. R.
Sahoo
,
A.
Lal
,
R.
Arenal
, and
T. N.
Narayanan
, “
Tuning the electronic structure of monolayer MoS2 towards metal like via vanadium doping
,”
Phys. Rev. Mater.
8
(
8
),
084002
(
2024
).
25.
T.
Fang
,
G.
Jiang
,
Y.
Xia
, and
P.
Ying
, “
Intra-layer inhomogeneity of the anode in commercial Li-ion batteries
,”
Batteries
9
(
9
),
463
(
2023
).
26.
M. S.
Whittingham
, “
Lithium batteries and cathode materials
,”
Chem. Rev.
104
(
10
),
4271
4302
(
2004
).
You do not currently have access to this content.