Microwave Kinetic Inductance Detectors (MKIDs) are superconducting detectors capable of single-photon counting with energy resolution across the ultraviolet, optical, and infrared (UVOIR) spectrum with microsecond timing precision. MKIDs are also multiplexable, providing a feasible way to create large-format, cryogenic arrays for sensitive imaging applications in biology, astronomy, and quantum information. Building large, cryogenic MKID arrays requires processing highly multiplexed, wideband readout signals in real time; this task has previously required large, heavy, and power-intensive custom electronics. In this work, we present the third-generation UVOIR MKID readout system (Gen3), which is capable of reading out twice as many detectors with an order of magnitude lower power, weight, volume, and cost-per-pixel as compared to the previous system. Gen3 leverages the Xilinx RFSoC4x2 platform to read out 2048, 1 MHz MKID channels per board. The system takes a modern approach to FPGA design using Vitis High-Level Synthesis to specify signal processing blocks in C/C++, Vivado ML intelligent design runs to inform implementation strategy and close timing, and Python productivity for Zynq to simplify interacting with and programming the FPGA using Python. This design suite and tool flow allows general users to contribute to and maintain the design and positions Gen3 to rapidly migrate to future platforms as they become available. In this work, we describe the system requirements, design, and implementation. We also provide performance characterization details and show that the system achieves detector-limited resolving power in the case of few readout tones and minimal degradation with all 2048 tones. Planned upgrades and future work are also discussed. The Gen3 MKID readout system is fully open-source and is expected to facilitate future array scaling to megapixel-sized formats and increase the feasibility of deploying UVOIR MKIDs in space.

1.
S.
Todaro
,
V.
Verma
,
K.
McCormick
,
D.
Allcock
,
R.
Mirin
,
D.
Wineland
,
S.
Nam
,
A.
Wilson
,
D.
Leibfried
, and
D.
Slichter
, “
State readout of a trapped ion qubit using a trap-integrated superconducting photon detector
,”
Phys. Rev. Lett.
126
,
010501
(
2021
).
2.
M.
Mariantoni
,
H.
Wang
,
T.
Yamamoto
,
M.
Neeley
,
R. C.
Bialczak
,
Y.
Chen
,
M.
Lenander
,
E.
Lucero
,
A. D.
O’Connell
,
D.
Sank
,
M.
Weides
,
J.
Wenner
,
Y.
Yin
,
J.
Zhao
,
A. N.
Korotkov
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Implementing the quantum von Neumann architecture with superconducting circuits
,”
Science
334
,
61
65
(
2011
).
3.
F.
Xia
,
M.
Gevers
,
A.
Fognini
,
A. T.
Mok
,
B.
Li
,
N.
Akbari
,
I. E.
Zadeh
,
J.
Qin-Dregely
, and
C.
Xu
, “
Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector
,”
ACS Photonics
8
,
2800
2810
(
2021
).
4.
K.
Niwa
,
T.
Numata
,
K.
Hattori
, and
D.
Fukuda
, “
Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry
,”
Sci. Rep.
7
,
45660
(
2017
).
5.
J.
Zmuidzinas
, “
Superconducting microresonators: Physics and applications
,”
Annu. Rev. Condens. Matter Phys.
3
,
169
214
(
2012
).
6.
B. A.
Mazin
et al, “
Microwave kinetic inductance detectors: The first decade
,”
AIP Conf. Proc.
1185
,
135
142
(
2009
).
7.
P. K.
Day
,
H. G.
LeDuc
,
B. A.
Mazin
,
A.
Vayonakis
, and
J.
Zmuidzinas
, “
A broadband superconducting detector suitable for use in large arrays
,”
Nature
425
,
817
821
(
2003
).
8.
N.
Zobrist
,
B. H.
Eom
,
P.
Day
,
B. A.
Mazin
,
S. R.
Meeker
,
B.
Bumble
,
H. G.
LeDuc
,
G.
Coiffard
,
P.
Szypryt
,
N.
Fruitwala
,
I.
Lipartito
, and
C.
Bockstiegel
, “
Wide-band parametric amplifier readout and resolution of optical microwave kinetic inductance detectors
,”
Appl. Phys. Lett.
115
,
042601
(
2019
).
9.
N.
Zobrist
,
W. H.
Clay
,
G.
Coiffard
,
M.
Daal
,
N.
Swimmer
,
P.
Day
, and
B. A.
Mazin
, “
Membraneless phonon trapping and resolution enhancement in optical microwave kinetic inductance detectors
,”
Phys. Rev. Lett.
129
,
017701
(
2022
).
10.
A. B.
Walter
,
N.
Fruitwala
,
S.
Steiger
,
J. I.
Bailey
,
N.
Zobrist
,
N.
Swimmer
,
I.
Lipartito
,
J. P.
Smith
,
S. R.
Meeker
,
C.
Bockstiegel
,
G.
Coiffard
,
R.
Dodkins
,
P.
Szypryt
,
K. K.
Davis
,
M.
Daal
,
B.
Bumble
,
G.
Collura
,
O.
Guyon
,
J.
Lozi
,
S.
Vievard
,
N.
Jovanovic
,
F.
Martinache
,
T.
Currie
, and
B. A.
Mazin
, “
The MKID exoplanet camera for Subaru SCExAO
,”
Publ. Astron. Soc. Pacific
132
,
125005
(
2020
).
11.
S.
Steiger
,
T.
Currie
,
T. D.
Brandt
,
O.
Guyon
,
M.
Kuzuhara
,
J.
Chilcote
,
T. D.
Groff
,
J.
Lozi
,
A. B.
Walter
,
N.
Fruitwala
,
J. I.
Bailey
III
,
N.
Zobrist
,
N.
Swimmer
,
I.
Lipartito
,
J. P.
Smith
,
C.
Bockstiegel
,
S. R.
Meeker
,
G.
Coiffard
,
R.
Dodkins
,
P.
Szypryt
,
K. K.
Davis
,
M.
Daal
,
B.
Bumble
,
S.
Vievard
,
A.
Sahoo
,
V.
Deo
,
N.
Jovanovic
,
F.
Martinache
,
G.
Doppmann
,
M.
Tamura
,
N. J.
Kasdin
, and
B. A.
Mazin
, “
SCExAO/MEC and CHARIS discovery of a low-mass, 6 au separation companion to HIP 109427 using stochastic speckle discrimination and high-contrast spectroscopy*
,”
Astron. J.
162
,
44
(
2021
).
12.
N.
Swimmer
,
T.
Currie
,
S.
Steiger
,
G. M.
Brandt
,
T. D.
Brandt
,
O.
Guyon
,
M.
Kuzuhara
,
J.
Chilcote
,
T.
Tobin
,
T. D.
Groff
,
J.
Lozi
,
J. I. I.
Bailey
,
A. B.
Walter
,
N.
Fruitwala
,
N.
Zobrist
,
J. P.
Smith
,
G.
Coiffard
,
R.
Dodkins
,
K. K.
Davis
,
M.
Daal
,
B.
Bumble
,
S.
Vievard
,
N.
Skaf
,
V.
Deo
,
N.
Jovanovic
,
F.
Martinache
,
M.
Tamura
,
N. J.
Kasdin
, and
B. A.
Mazin
, “
SCExAO and Keck direct imaging discovery of a low-mass companion around the accelerating F5 star HIP 5319
,”
Astron. J.
164
,
152
(
2022
).
13.
J. I.
Bailey
III
,
B. A.
Mazin
,
J. P.
Smith
,
C. S.
Kim
,
W. H.
Clay
,
N.
Zobrist
,
N. J.
Swimmer
,
S.
Steiger
, and
M.
Daal
, “
M-MOST: The MKID multi-object echelle(tte) spectrographic testbench
,”
Proc. SPIE
12188
,
121884Z
(
2022
).
14.
N.
Fruitwala
,
P.
Strader
,
G.
Cancelo
,
T.
Zmuda
,
K.
Treptow
,
N.
Wilcer
,
C.
Stoughton
,
A. B.
Walter
,
N.
Zobrist
,
G.
Collura
,
I.
Lipartito
,
J. I.
Bailey
, and
B. A.
Mazin
, “
Second generation readout for large format photon counting microwave kinetic inductance detectors
,”
Rev. Sci. Instrum.
91
,
124705
(
2020
).
15.
See
https://github.com/MazinLab/MKIDGen3 for project source code.
16.
J.
Gao
, “
The physics of superconducting microwave resonators
,” Ph.D. thesis (
California Institute of Technology
,
2008
).
17.
B. A.
Mazin
, “
Microwave kinetic inductance detectors
,” Ph.D. thesis (
California Institute of Technology
,
2005
).
18.
N.
Zobrist
, “
Improving the resolving power of ultraviolet to near-infrared microwave kinetic inductance detectors
,” Ph.D. thesis (
University of California, Santa Barbara
,
Santa Barbara, CA
,
2022
).
19.
P.
Szypryt
,
B. A.
Mazin
,
G.
Ulbricht
,
B.
Bumble
,
S. R.
Meeker
,
C.
Bockstiegel
, and
A. B.
Walter
, “
High quality factor platinum silicide microwave kinetic inductance detectors
,”
Appl. Phys. Lett.
109
,
151102
(
2016
).
20.
G.
Coiffard
,
M.
Daal
,
N.
Zobrist
,
N.
Swimmer
,
S.
Steiger
,
B.
Bumble
, and
B. A.
Mazin
, “
Characterization of sputtered hafnium thin films for high quality factor microwave kinetic inductance detectors
,”
Supercond. Sci. Technol.
33
,
07LT02
(
2020
).
21.
B. A.
Mazin
, “
Superconducting materials for microwave kinetic inductance detectors
,” in
Handbook of Superconductivity: Characterization and Applications
, 3rd ed., edited by
D. A.
Cardwell
,
D. C.
Larbalestier
, and
A.
Braginski
(
CRC Press
,
2021
), Vol. 3, Chap. H4.3.
22.
P.
Szypryt
,
S. R.
Meeker
,
G.
Coiffard
,
N.
Fruitwala
,
B.
Bumble
,
G.
Ulbricht
,
A. B.
Walter
,
M.
Daal
,
C.
Bockstiegel
,
G.
Collura
,
N.
Zobrist
,
I.
Lipartito
, and
B. A.
Mazin
, “
Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy
,”
Opt. Express
25
,
25894
25909
(
2017
).
23.
N.
Zobrist
,
N.
Klimovich
,
B.
Ho Eom
,
G.
Coiffard
,
M.
Daal
,
N. J.
Swimmer
,
S.
Steiger
,
B.
Bumble
,
H. G.
LeDuc
,
P. K.
Day
, and
B. A.
Mazin
, “
Improving the dynamic range of single photon counting kinetic inductance detectors
,”
J. Astron. Telesc. Instrum. Syst.
7
,
010501
(
2021
).
24.

We set our requirement at 808 nm despite the fact that MEC was characterized at 850 nm due to difference in the availability of laser sources between Subaru Telescope and our lab at UCSB.

25.
M. J.
Strader
,
M. D.
Johnson
,
B. A.
Mazin
,
G. V.
Spiro Jaeger
,
C. R.
Gwinn
,
S. R.
Meeker
,
P.
Szypryt
,
J. C.
van Eyken
,
D.
Marsden
,
K.
O’Brien
,
A. B.
Walter
,
G.
Ulbricht
,
C.
Stoughton
, and
B.
Bumble
, “
Excess optical enhancement observed with arcons for early crab giant pulses
,”
Astrophys. J.
779
,
L12
(
2013
).
26.
S.
Guo
,
J.
Tan
,
H.
Zhang
,
J.
Wang
,
T.
Ji
,
L.
Zhang
,
X.
Hu
,
J.
Chen
,
J.
Xie
,
K.
Zou
,
Y.
Meng
,
X.
Bei
,
L.-A.
Wu
,
Q.
Chen
,
H.
Wang
,
X.
Tu
,
X.
Jia
,
Q.-Y.
Zhao
,
L.
Kang
, and
P.
Wu
, “
High-timing-precision detection of single X-ray photons by superconducting nanowires
,”
Natl. Sci. Rev.
11
,
nwad102
(
2023
).
27.
AMD
, Zynq UltraScale+ RFSoC ZCU670 Evaluation Kit (
2024
).
28.
AMD
, RF-ADC Multi-Band Operation Zynq UltraScale+ RFSoC RF Data Converter v2.6 Gen 1/2/3/DFE LogiCORE IP Product Guide (PG269) Reader AMD Technical Information Portal (
2024
).
29.
J. I.
Bailey
III
,
J. P.
Smith
,
B. A.
Mazin
,
G. I.
Cancelo
,
L.
Stefanazzi
,
A.
Cuda
,
N.
Zobrist
, and
K.
Treptow
,
MKIDGen3: A Scalable Readout for Next-Generation Kilopixel UVOIR MKIDs
(
SPIE
,
Yokohama, Japan
,
2024
).
30.
AMD
, Multi-Tile Synchronization Zynq UltraScale+ RFSoC RF Data Converter v2.6 Gen 1/2/3/DFE LogiCORE IP Product Guide (PG269) Reader AMD Technical Information Portal (
2024
).
31.
AMD
, SYSREF Signal Requirements Zynq UltraScale+ RFSoC RF Data Converter v2.6 Gen 1/2/3/DFE LogiCORE IP Product Guide (PG269) (
2024
).
32.
J. P.
Smith
,
J. I.
Bailey
,
J.
Tuthill
,
L.
Stefanazzi
,
G.
Cancelo
,
K.
Treptow
, and
B. A.
Mazin
, “
A high-throughput oversampled polyphase filter bank using Vivado HLS and PYNQ on a RFSoC
,”
IEEE Open J. Circuits Syst.
2
,
241
252
(
2021
).
33.
AMD
, Intelligent Design Runs Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906) Reader AMD Technical Information Portal (
2024
).
34.

See 4-tap filter response images in Smith.35 

35.
J.
Smith
, gen3-vivado-top/data/4_tap_equiripple at main MazinLab/gen3-vivado-top (
2024
).
36.
AMD
, CORDIC (
2021
).
37.
AMD
, FIR Compiler (
2022
).
38.
M. Lab
, MazinLab/wb2axip: Bus bridges and other odds and ends (
2024
).
39.
PYNQ (
2024
).
40.
lm-sensors/lm-sensors (
2024
), original-date: 2011-12-20T22:29:46Z.
41.
P/N: 11002-0201.
42.

Redondo et al.43 found phase randomization to perform similarly to crest factor reduction methods studied in Shibasaki et al.44 

43.
M. E. G.
Redondo
,
T.
Muscheid
,
R.
Gartmann
,
J. M.
Salum
,
L. P.
Ferreyro
,
N. A.
Müller
,
J. D.
Bonilla-Neira
,
J. M.
Geria
,
J. J.
Bonaparte
,
A.
Almela
,
L. E.
Ardila-Perez
,
M. R.
Hampel
,
A. E.
Fuster
,
M.
Platino
,
O.
Sander
,
M.
Weber
, and
A.
Etchegoyen
, “
RFSoC Gen3-based software-defined radio characterization for the readout system of low-temperature bolometers
,”
J. Low Temp. Phys.
215
,
161
169
(
2024
).
44.
Y.
Shibasaki
,
K.
Asami
,
R.
Aoki
,
A.
Hatta
,
A.
Kuwana
, and
H.
Kobayashi
, “
Analysis and design of multi-tone signal generation algorithms for reducing crest factor
,” in
2020 IEEE 29th Asian Test Symposium (ATS)
(
IEEE
,
2020
), pp.
1
6
.
45.

Full fabrication details are provided in Szypryt et al.22 

46.
F.
Faramarzi
,
R.
Stephenson
,
S.
Sypkens
,
B. H.
Eom
,
H.
LeDuc
, and
P.
Day
, “
A 4-8 GHz kinetic inductance travelling-wave parametric amplifier using four-wave mixing with near quantum-limit noise performance
,”
APL Quantum
1
,
036107
(
2024
). 036107
47.
R.
Martin
, Bit by Bit Signal Processing.
48.
AMD
, Image Due to IQ Imbalance Co-location Deployment Considerations for Direct RF Sampling Transceivers (WP541) Reader AMD Technical Information Portal (
2022
).
49.
AMD
, Aerospace and Defense Platforms (
2024
).
50.
C.
Yu
,
Z.
Ahmed
,
J. C.
Frisch
,
S. W.
Henderson
,
M.
Silva-Feaver
,
K.
Arnold
,
D.
Brown
,
J.
Connors
,
A. J.
Cukierman
,
J. M.
D’Ewart
,
B. J.
Dober
,
J. E.
Dusatko
,
G.
Haller
,
R.
Herbst
,
G. C.
Hilton
,
J.
Hubmayr
,
K. D.
Irwin
,
C.-L.
Kuo
,
J. A. B.
Mates
,
L.
Ruckman
,
J.
Ullom
,
L.
Vale
,
D. D.
Van Winkle
,
J.
Vasquez
, and
E.
Young
, “
SLAC microresonator RF (SMuRF) electronics: A tone-tracking readout system for superconducting microwave resonator arrays
,”
Rev. Sci. Instrum.
94
,
014712
(
2023
).
51.
A.
Walter
,
B.
Mazin
,
C.
Bockstiegel
,
N.
Fruitwala
,
P.
Szypryt
,
I.
Lipartito
,
S.
Meeker
,
N.
Zobrist
,
G.
Collura
,
G.
Coiffard
,
P.
Strader
,
O.
Guyon
,
J.
Lozi
, and
N.
Jovanovic
, MEC: The MKID Exoplanet Camera for High Contrast Astronomy at Subaru (Conference Presentation) (
2018
), p.
31
.
52.
A. G.
Kozorezov
,
A. F.
Volkov
,
J. K.
Wigmore
,
A.
Peacock
,
A.
Poelaert
, and
R.
den Hartog
, “
Quasiparticle-phonon downconversion in nonequilibrium superconductors
,”
Phys. Rev. B
61
,
11807
11819
(
2000
).
53.
A. G.
Kozorezov
,
J. K.
Wigmore
,
D.
Martin
,
P.
Verhoeve
, and
A.
Peacock
, “
Electron energy down-conversion in thin superconducting films
,”
Phys. Rev. B
75
,
094513
(
2007
).
54.
A. G.
Kozorezov
,
J. K.
Wigmore
,
D.
Martin
,
P.
Verhoeve
, and
A.
Peacock
, “
Phonon noise in thin metal films in an advanced energy down-conversion stage
,”
J. Low Temp. Phys.
151
,
51
57
(
2008
).
55.
P. J.
de Visser
,
S. A.
de Rooij
,
V.
Murugesan
,
D. J.
Thoen
, and
J. J.
Baselmans
, “
Phonon-trapping-enhanced energy resolution in superconducting single-photon detectors
,”
Phys. Rev. Appl.
16
,
034051
(
2021
).
You do not currently have access to this content.