The detection time of the ultramicroelectrode can be reduced to nanoseconds when compared to the macroscopic electrode, enabling real-time monitoring of the instantaneous electrochemical behavior of the microstructure. Preparing ultramicroelectrode thus has drawn great attention recently. In the present study, a novel method for the preparation of disk ultramicroelectrodes with controllable electrode end sizes based on the nanoskiving method is proposed. The feature dimensions of the ultramicroelectrode can be controlled by the nanoskiving parameters. The electrochemical performance of the prepared ultramicroelectrode is evaluated in the solution system consisting of a 1 mM FcMeOH (ferrocenyl methanol) and 0.1 M KCl aqueous solution. The steady-state limit current deviation rate of the electrode is 7%, and it can work continuously for 600 s. Moreover, the electrode is integrated with micrometer precision scanning and positioning devices, which conduct electrochemical characterization of the micron structure array sample. The electrochemical image of the tin-doped indium oxide sample is measured successfully. The funding in this study provides a novel method to prepare ultramicroelectrodes. Importantly, high-precision electrochemical imaging equipment is established that can be used to measure electrochemical images.

1.
J. T.
Mefford
,
A. R.
Akbashev
,
M.
Kang
,
C. L.
Bentley
,
W. E.
Gent
,
H. D.
Deng
,
D. H.
Alsem
,
Y.-S.
Yu
,
N. J.
Salmon
,
D. A.
Shapiro
,
P. R.
Unwin
, and
W. C.
Chueh
, “
Correlative operando microscopy of oxygen evolution electrocatalysts
,”
Nature
593
(
7857
),
67
73
(
2021
).
2.
A. J.
Bard
,
L. R.
Faulkner
, and
H. S.
White
,
Electrochemical Methods: Fundamentals and Applications
, 3rd ed. (
Wiley
,
New York
,
2022
), p.
214
.
3.
L. E.
Delle
,
V.
Pachauri
,
A.
Vlandas
,
M.
Riedel
,
B.
Lägel
,
R.
Lilischkis
,
X. T.
Vu
,
P.
Wagner
,
R.
Thoelen
,
F.
Lisdat
, and
S.
Ingebrandt
, “
Scalable fabrication and application of nanoscale IDE-arrays as multi-electrode platform for label-free biosensing
,”
Sens. Actuators, B
265
,
115
125
(
2018
).
4.
K.
Dawson
,
A.
Wahl
,
A.
Pescaglini
,
D.
Iacopino
, and
A.
O’Riordan
, “
Gold nanowire electrode arrays: Investigations of non-faradaic behavior
,”
J. Electrochem. Soc.
161
(
2
),
B3049
B3054
(
2014
).
5.
Y.
Liu
,
M.
Sairi
,
G.
Neusser
,
C.
Kranz
, and
D. W. M.
Arrigan
, “
Achievement of diffusional independence at nanoscale liquid–liquid interfaces within arrays
,”
Anal. Chem.
87
(
11
),
5486
5490
(
2015
).
6.
Y.
Fan
,
C.
Han
, and
B.
Zhang
, “
Recent advances in the development and application of nanoelectrodes
,”
Analyst
141
(
19
),
5474
5487
(
2016
).
7.
B.
Yang
,
E.
Kazuma
,
Y.
Yokota
, and
Y.
Kim
, “
Fabrication of sharp gold tips by three-electrode electrochemical etching with high controllability and reproducibility
,”
J. Phys. Chem. C
122
(
29
),
16950
16955
(
2018
).
8.
D.
He
,
P.
Zhang
,
S.
Li
, and
H.
Luo
, “
A novel free-standing CVD graphene platform electrode modified with AuPt hybrid nanoparticles and l-cysteine for the selective determination of epinephrine
,”
J. Electroanal. Chem.
823
,
678
687
(
2018
).
9.
Y.
Qian
,
H.
Tang
, and
Y.
Li
, “
Single gold nanoclusters: Formation and sensing application for isonicotinic acid hydrazide detection
,”
Talanta
220
,
121376
(
2020
).
10.
Y.
Yu
,
Y.
Gao
,
K.
Hu
,
P.
Blanchard
,
J.
Noël
,
T.
Nareshkumar
,
K. L.
Phani
,
G.
Friedman
,
Y.
Gogotsi
, and
M. V.
Mirkin
, “
Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes
,”
ChemElectroChem
2
(
1
),
58
63
(
2015
).
11.
J.
Wang
,
Y.
Zhou
,
H.
Zhao
et al, “
Investigation on the electrical property of gold nanowire prepared by nanoskiving
,”
Physica B: Condensed Matter
696
,
416626
(
2025
).
12.
C.-N.
Chang
,
H.-B.
Cheng
, and
A. C.
Chao
, “
Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes
,”
Environ. Sci. Technol.
38
(
6
),
1807
1812
(
2004
).
You do not currently have access to this content.