Nano-positioning plays a very important role in applications such as scanning probe microscopy and optics. We report the development of a compact inertial nanopositioner along with fully computer interfaced electronics operating down to 2 K and its use in our fully automated needle-anvil type Point Contact Andreev Reflection (PCAR) apparatus. We also present the fully automated operational procedures using the LabVIEW interface with our home-built electronics. The point contact spectroscopy probe has been successfully used to perform PCAR measurements on elemental superconductors at low temperatures. The small footprint of our nanopositioner makes it ideally suited for incorporation in low temperature scanning probe microscopes and makes this design versatile for various research and industrial purposes.

1.
E.
Manske
,
G.
Jäger
,
T.
Hausotte
, and
R.
Füßl
, “
Recent developments and challenges of nanopositioning and nano measuring technology
,”
Meas. Sci. Technol.
23
,
074001
(
2012
).
2.
J.
Li
,
H.
Huang
, and
T.
Morita
, “
Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review
,”
Sens. Actuators, A
292
,
39
(
2019
).
3.
S.
Devasia
,
E.
Eleftheriou
, and
S. O. R.
Moheimani
, “
A survey of control issues in nanopositioning
,”
IEEE Trans. Control Syst. Technol.
15
,
802
(
2007
).
4.
V. S.
Bhat
,
K.
Bajar
,
R.
Chatterjee
, and
S.
Mujumdar
, “
Facile dual-shot measurement of Schmidt number in type-0 and type-2 downconversion
,”
Phys. Rev. Res.
6
,
033151
(
2024
).
5.
W.
Wu
and
Z. L.
Wang
, “
Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics
,”
Nat. Rev. Mater.
1
,
16031
(
2016
).
6.
E. T.
Hwu
,
E.
Nazaretski
,
Y. S.
Chu
,
H. H.
Chen
,
Y. S.
Chen
,
W.
Xu
, and
Y.
Hwu
, “
Design and characterization of a compact nano-positioning system for a portable transmission x-ray microscope
,”
Rev. Sci. Instrum.
84
,
123702
(
2013
).
7.
M.
Humbert
,
Y.
Hallez
,
V.
Larrey
,
F.
Fournel
,
E.
Palleau
,
V.
Paillard
,
A.
Cuche
, and
L.
Ressier
, “
Versatile, rapid and robust nano-positioning of single-photon emitters by AFM-nanoxerography
,”
Nanotechnology
33
,
215301
(
2022
).
8.
Y. S.
Chen
,
H. H.
Chen
,
T. T.
Li
,
E.
Ong
,
J.
Lim
,
G.
Margaritondo
,
E. T.
Hwu
, and
Y.
Hwu
, “
A compact synchrotron-based transmission X-ray microscope
,”
J. Synchrotron Radiat.
21
,
376
(
2014
).
9.
S.
Hung
,
E.
Hwu
,
I.
Hwang
, and
L.
Fu
, “
Postfitting control scheme for periodic piezoscanner driving
,”
Jpn. J. Appl. Phys.
45
,
1917
(
2006
).
10.
W. M.
Wang
,
K. Y.
Huang
,
H. F.
Huang
,
I. S.
Hwang
, and
E. T.
Hwu
, “
Low-voltage and high-performance buzzer-scanner based streamlined atomic force microscope system
,”
Nanotechnology
24
,
455503
(
2013
).
11.
S. K.
Hung
,
E. T.
Hwu
,
M. Y.
Chen
, and
L. C.
Fu
, “
Dual-stage piezoelectric nano-positioner utilizing a range-extended optical fiber Fabry–Perot interferometer
,”
IEEE/ASME Trans. Mechatron.
12
,
291
(
2007
).
12.
P. R.
Ouyang
,
W. J.
Zhang
,
M. M.
Gupta
, and
W.
Zhao
, “
Overview of the development of a visual based automated bio-micromanipulation system
,”
Mechatronics
17
,
578
(
2007
).
13.
Y. M.
Al-Rawashdeh
,
M.
Al-Tamimi
,
M.
Heertjes
, and
M.
Al Janaideh
, “
Micro-positioning end-stage for precise multi-Axis motion control in optical lithography machines
,” in
American Control Conference (ACC)
(
IEEE Publications
,
2021
), pp.
40
47
.
14.
T.
Wang
,
B.
Zhang
,
L.
Li
,
R.
Zhang
,
D.
Wu
, and
R.
Fan
, “
Analysis and control of intelligent manufacturing aerospace parts based on zero-point quick-change technology
,” in
3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT)
(
IEEE Publications
,
2021
), pp.
445
448
.
15.
S.
Streetman
and
L.
Kingsbury
, “
Cryogenic nano-positioner development and test for space applications
,”
SPIE Proc.
4850
,
274
(
2003
).
16.
Q.
Xu
, “
Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control
,”
IEEE Trans. Autom. Sci. Eng.
14
,
238
(
2017
).
17.
S.
Aphale
,
A. J.
Fleming
, and
S. O. R.
Moheimani
, “
High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control
,”
Micro Nano Lett.
2
,
9
(
2007
).
18.
T.
Fujii
,
M.
Suzuki
,
M.
Yamaguchi
,
R.
Kawaguchi
,
H.
Yamada
, and
K.
Nakayama
, “
Three-dimensional displacement measurement of a tube scanner for a scanning tunneling microscope by optical interferometer
,”
Nanotechnology
6
,
121
(
1995
).
19.
B.
Zhao
,
J. P.
Howard-Knight
,
A. D. L.
Humphris
,
L.
Kailas
,
E. C.
Ratcliffe
,
S. J.
Foster
, and
J. K.
Hobbs
, “
Large scan area high-speed atomic force microscopy using a resonant scanner
,”
Rev. Sci. Instrum.
80
,
093707
(
2009
).
20.
K.
Uchino
, “
Piezoelectric actuators
,”
J. Electroceram.
20
,
301
(
2008
).
21.
H.-S.
Liao
,
C.
Werner
,
R.
Slipets
,
P.
Emil Larsen
,
I.-S.
Hwang
,
T.-J.
Chang
,
H.
Ulrich Danzebrink
,
K.-Y.
Huang
, and
E.-T.
Hwu
, “
Low-cost, open-source XYZ nanopositioner for high-precision analytical applications
,”
HardwareX
11
,
e00317
(
2022
).
22.
P.-Z.
Li
,
D.-F.
Zhang
,
B.
Lennox
, and
F.
Arvin
, “
A 3-DOF piezoelectric driven nanopositioner: Design, control and experiment
,”
Mech. Syst. Signal Process.
155
,
107603
(
2021
).
23.
Y.
Tian
,
Y.
Ma
,
F.
Wang
,
K.
Lu
, and
D.
Zhang
, “
A novel XYZ micro/nano positioner with an amplifier based on L-shape levers and half-bridge structure
,”
Sens. Actuators, A
302
,
111777
(
2020
).
24.
R.
Adhikari
,
K.
Doesinger
,
P.
Lindner
,
B.
Faina
, and
A.
Bonanni
, “
Low temperature and high magnetic field performance of a commercial piezo-actuator probed via laser interferometry
,”
Rev. Sci. Instrum.
92
,
035002
(
2021
).
25.
R. M.
Warden
, “
Cryogenic nano-actuator for JWST
,”
Aerospace Mechanisms Symposium
(
Langley Research Center
,
2012
).
26.
S.
Park
and
C. F.
Quate
, “
Scanning tunneling microscope
,”
Rev. Sci. Instrum.
58
,
2010
(
1987
).
27.
A.
Kamlapure
,
G.
Saraswat
,
S. C.
Ganguli
,
V.
Bagwe
,
P.
Raychaudhuri
, and
S. P.
Pai
, “
A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals
,”
Rev. Sci. Instrum.
84
,
123905
(
2013
).
28.
Y. G.
Naidyuk
and
I. K.
Yanson
,
Point-Contact Spectroscopy
(
Springer-Verlag
,
NewYork
,
2005
).
29.
A. M.
Duif
,
A. G. M.
Jansen
, and
P.
Wyder
, “
Point-contact spectroscopy
,”
J. Phys.: Condens. Matter
1
,
3157
(
1989
).
30.
M.
Tortello
,
W. K.
Park
,
C. O.
Ascencio
,
P.
Saraf
, and
L. H.
Greene
, “
Design and construction of a point-contact spectroscopy rig with lateral scanning capability
,”
Rev. Sci. Instrum.
87
,
063903
(
2016
).
31.
S.
Das
and
G.
Sheet
, “
A modular point contact spectroscopy probe for sub-Kelvin applications
,”
Rev. Sci. Instrum.
90
,
103903
(
2019
).
32.
G. E.
Blonder
and
M.
Tinkham
, “
Metallic to tunneling transition in Cu–Nb point contacts
,”
Phys. Rev. B
27
,
112
(
1983
).
33.
D.
Daghero
and
R. S.
Gonnelli
, “
Probing multiband superconductivity by point-contact spectroscopy
,”
Supercond. Sci. Technol.
23
,
043001
(
2010
).
34.
P.
Raychaudhuri
,
A. P.
Mackenzie
,
J. W.
Reiner
, and
M. R.
Beasley
, “
Transport spin polarization in SrRuO3 measured through point-contact Andreev reflection
,”
Phys. Rev. B
67
,
020411
(
2003
).
35.
L.
Janson
,
M.
Klein
,
H.
Lewis
,
A.
Lucas
,
A.
Marantan
, and
K.
Luna
, “
Undergraduate experiment in superconductor point-contact spectroscopy with a Nb/Au junction
,”
Am. J. Phys.
80
,
133
(
2012
).
36.
N.
Groll
,
M. J.
Pellin
,
J. F.
Zasadzinksi
, and
T.
Proslier
, “
Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties
,”
Rev. Sci. Instrum.
86
,
095111
(
2015
).
37.
P.
Parab
,
V.
Bagwe
,
B.
Chalke
,
H.
Muthurajan
,
P.
Raychaudhuri
, and
S.
Bose
, “
Superconductivity in immiscible Nb–Cu nanocomposite films
,”
Supercond. Sci. Technol.
30
,
055005
(
2017
).
38.
L.
Aggarwal
,
C. K.
Singh
,
M.
Aslam
,
R.
Singha
,
A.
Pariari
,
S.
Gayen
,
M.
Kabir
,
P.
Mandal
, and
G.
Sheet
, “
Tip-induced superconductivity coexisting with preserved topological properties in line-nodal semimetal ZrSiS
,”
J. Phys.: Condens. Matter
31
,
485707
(
2019
).
39.
P.
Romano
,
F.
Avitabile
,
A.
Di Bartolomeo
, and
F.
Giubileo
, “
Point contact spectroscopy: A powerful technique for the low temperature characterization of superconducting materials
,” in
IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace)
(
IEEE
,
Pisa, Italy
,
2022
), pp.
532
537
.
40.
A. F.
Andreev
, “
The thermal conductivity of the intermediate state in superconductors
,”
Sov. Phys.-JETP
19
,
1228
(
1964
).
41.
G.
Sheet
,
S.
Mukhopadhyay
, and
P.
Raychaudhuri
, “
Role of critical current on the point-contact Andreev reflection spectra between a normal metal and a superconductor
,”
Phys. Rev. B
69
,
134507
(
2004
).
42.
G.
Sheet
,
S.
Mukhopadhyay
,
S.
Soman
, and
P.
Raychaudhuri
, “
Anomalous structures in point contact Andreev reflection spectrum
,”
Physica B
359–361
,
491
(
2005
).
43.
R.
Kumar
and
G.
Sheet
, “
Nonballistic transport characteristics of superconducting point contacts
,”
Phys. Rev. B
104
,
094525
(
2021
).
44.
G. E.
Blonder
,
M.
Tinkham
, and
T. M.
Klapwijk
, “
Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion
,”
Phys. Rev. B
25
,
4515
(
1982
).
45.
R. C.
Dynes
,
V.
Narayanamurti
, and
J. P.
Garno
, “
Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor
,”
Phys. Rev. Lett.
41
,
1509
(
1978
).
46.
M.
Tinkham
,
Introduction to Superconductivity
(
McGraw-Hill, Inc.
,
Singapore
,
1996
).
47.
H.
Zhou
,
N.
Auerbach
,
I.
Roy
,
M.
Bocarsly
,
M. E.
Huber
,
B.
Barick
,
A.
Pariari
,
M.
Hücker
,
Z. S.
Lim
,
A.
Ariando
,
A. I.
Berdyugin
,
N.
Xin
,
M.
Rappaport
,
Y.
Myasoedov
, and
E.
Zeldov
, “
Scanning SQUID-on-tip microscope in a top-loading cryogen-free dilution refrigerator
,”
Rev. Sci. Instrum.
94
,
053706
(
2023
).
48.
S. C.
White
,
U. R.
Singh
, and
P.
Wahl
, “
A stiff scanning tunneling microscopy head for measurement at low temperatures and in high magnetic fields
,”
Rev. Sci. Instrum.
82
,
113708
(
2011
).
49.
A.
Pleceník
,
M.
Grajcar
,
S.
Benacka
,
P.
Seidel
, and
A.
Pfuch
, “
Finite-quasiparticle-lifetime effects in the differential conductance of Bi2Sr2CaCu2Oy/Au junctions
,”
Phys. Rev. B
49
,
10016
(
1994
).
50.
P.
Raychaudhuri
,
D.
Jaiswal-Nagar
,
G.
Sheet
,
S.
Ramakrishnan
, and
H.
Takeya
, “
Evidence of gap anisotropy in superconducting YNi2B2C using directional point contact spectroscopy
,”
Phys. Rev. Lett.
93
,
156802
(
2004
).
51.
F.
Herman
and
R.
Hlubina
, “
Microscopic interpretation of the Dynes formula for the tunneling density of states
,”
Phys. Rev. B
94
,
144508
(
2016
).
52.
G.
Sheet
, “
Point contact Andreev reflection spectroscopy on superconductors and ferromagnets
,”
Ph.D thesis
,
Tata Institute of Fundamental Research
,
2006
,
available at
https://www.tifr.res.in/superconductivity/pdfs/goutamsheet.pdf.
53.
S.
Dutta
,
J.
Jesudasan
, and
P.
Raychaudhuri
, “
Magnetic field induced transition from a vortex liquid to Bose metal in ultrathin a-MoGe thin film
,”
Phys. Rev. B
105
,
L140503
(
2022
).
54.
R.
Duhan
,
S.
Sengupta
,
R.
Tomar
,
S.
Basistha
,
V.
Bagwe
,
C.
Dasgupta
, and
P.
Raychaudhuri
, “
Structure and dynamics of a pinned vortex liquid in a superconducting a−Re6Zr thin film
,”
Phys. Rev. B
108
,
L180503
(
2023
).
55.
V.
Bagwe
,
R.
Duhan
,
B.
Chalke
,
J.
Parmar
,
S.
Basistha
, and
P.
Raychaudhuri
, “
Origin of superconductivity in disordered tungsten thin films
,”
Phys. Rev. B
109
,
104519
(
2024
).
56.
S.
Bose
,
P.
Raychaudhuri
,
R.
Banerjee
,
P.
Vasa
, and
P.
Ayyub
, “
Mechanism of the size dependence of the superconducting transition of nanostructured Nb
,”
Phys. Rev. Lett.
95
,
147003
(
2005
).
57.
S.
Bose
, “
Size effects in nanostructured superconductors
,”
Ph.D thesis
,
Tata Institute of Fundamental Research
,
2006
,
available at
https://www.tifr.res.in/superconductivity/pdfs/sangitabose.pdf.
You do not currently have access to this content.