We report the design, fabrication, and testing of an atomic layer deposition (ALD) system that is capable of reflection high energy electron diffraction (RHEED) in a single chamber. The details and specifications of the system are described and include capabilities of RHEED at varied accelerating voltages, sample rotation (azimuthal) control, sample height control, sample heating up to set temperatures of 1050 °C, and either single- or dual-differential pumping designs. Thermal and flow simulations were used to justify selected system dimensions as well as carrier gas/precursor mass flow rates. Temperature calibration was conducted to determine actual sample temperatures that are necessary for meaningful analysis of thermally induced transitions in ALD thin films. Several demonstrations of RHEED in the system are described. Calibration of the camera length was conducted using a gold thin film by analyzing RHEED images. Finally, RHEED conducted at a series of increasing temperatures was used to monitor the crystallization of an ALD HfO2 thin film. The crystallization temperature and the ring pattern were consistent with the monoclinic structure as determined by separate x-ray diffraction-based measurements.

1.
S. M.
George
, “
Atomic layer deposition: An Overview
,”
Chem. Rev.
110
(
1
),
111
131
(
2010
).
2.
M.
Ritala
,
K.
Kukli
,
A.
Rahtu
,
P. I.
Raisanen
,
M.
Leskela
,
T.
Sajavaara
, and
J.
Keinonen
, “
Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources
,”
Science
288
,
319
321
(
2000
).
3.
A.
Foroughi-Abari
and
K.
Cadien
, “
Atomic layer deposition for nanotechnology
,” in
Nanofabrication
(
Springer
,
Vienna
,
2012
), pp.
143
161
.
4.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
, “
Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends
,”
J. Appl. Phys.
113
,
021301
(
2013
).
5.
R.
Vasić
,
S.
Consiglio
,
R. D.
Clark
,
K.
Tapily
,
S.
Sallis
,
B.
Chen
,
D.
Newby
,
M.
Medikonda
,
G.
Raja Muthinti
,
E.
Bersch
,
J.
Jordan-Sweet
,
C.
Lavoie
,
G. J.
Leusink
, and
A. C.
Diebold
, “
Multi-technique x-ray and optical characterization of crystalline phase, texture, and electronic structure of atomic layer deposited Hf1−xZrxO2 gate dielectrics deposited by a cyclical deposition and annealing scheme
,”
J. Appl. Phys.
113
(
23
),
234101
(
2013
).
6.
M.
Bhuyian
,
D.
Misra
,
K.
Tapily
,
R.
Clark
,
S.
Consiglio
,
C.
Wajda
,
G.
Nakamura
, and
G.
Leusink
, “
Reliability of ALD Hf1−xZrxO2 deposited by intermediate annealing or intermediate plasma treatment
,”
ECS Trans.
58
(
7
),
17
29
(
2013
).
7.
R. D.
Clark
,
S.
Consiglio
,
G.
Nakamura
,
Y.
Trickett
, and
G. J.
Leusink
, “
Optimizing ALD HfO2 for advanced gate stacks with interspersed UV and thermal treatments- DADA and MDMA variations, combinations, and optimization
,”
ECS Trans.
41
(
2
),
79
88
(
2011
).
8.
J. F.
Conley
,
Y.
Ono
, and
D. J.
Tweet
, “
Densification and improved electrical properties of pulse-deposited films via in situ modulated temperature annealing
,”
Appl. Phys. Lett.
84
(
11
),
1913
1915
(
2004
).
9.
J. F.
Conley
,
D. J.
Tweet
,
Y.
Ono
, and
G.
Stecker
, “
Interval annealing during alternating pulse deposition
,”
MRS Proc.
811
,
152
(
2004
).
10.
T.
Henke
,
M.
Knaut
,
C.
Hossbach
,
M.
Geidel
,
M.
Albert
, and
J. W.
Bartha
, “
Growth of aluminum oxide thin films with enhanced film density by the integration of in situ flash annealing into low-temperature atomic layer deposition
,”
Surf. Coat. Technol.
309
,
600
608
(
2017
).
11.
T.
Henke
,
M.
Knaut
,
C.
Hossbach
,
M.
Geidel
,
L.
Rebohle
,
M.
Albert
,
W.
Skorupa
, and
J. W.
Bartha
, “
Flash-lamp-enhanced atomic layer deposition of thin films
,”
ECS Trans.
64
(
9
),
167
189
(
2014
).
12.
T.
Henke
,
M.
Knaut
,
C.
Hossbach
,
M.
Geidel
,
L.
Rebohle
,
M.
Albert
,
W.
Skorupa
, and
J. W.
Bartha
, “
Flash-enhanced atomic layer deposition: Basics, opportunities, review, and principal studies on the flash-enhanced growth of thin films
,”
ECS J. Solid State Sci. Technol.
4
(
7
),
P277
P287
(
2015
).
13.
B. D.
Piercy
,
J. P.
Wooding
,
S. A.
Gregory
, and
M. D.
Losego
, “
Pulsed heating atomic layer deposition (PH-ALD) for epitaxial growth of zinc oxide thin films on c-plane sapphire
,”
Dalton Trans.
51
(
1
),
303
311
(
2022
).
14.
J.
Dendooven
,
E.
Solano
,
M. M.
Minjauw
,
K.
Van de Kerckhove
,
A.
Coati
,
E.
Fonda
,
G.
Portale
,
Y.
Garreau
, and
C.
Detavernier
, “
Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition
,”
Rev. Sci. Instrum.
87
(
11
),
113905
(
2016
).
15.
K.
Devloo-Casier
,
J.
Dendooven
,
K. F.
Ludwig
,
G.
Lekens
,
J.
D’Haen
, and
C.
Detavernier
, “
In situ synchrotron based x-ray fluorescence and scattering measurements during atomic layer deposition: Initial growth of HfO2 on Si and Ge substrates
,”
Appl. Phys. Lett.
98
(
23
),
231905
(
2011
).
16.
N.
Nepal
,
V. R.
Anderson
,
S. D.
Johnson
,
B. P.
Downey
,
D. J.
Meyer
,
A.
DeMasi
,
Z. R.
Robinson
,
K. F.
Ludwig
, and
C. R.
Eddy
, “
Real-time growth study of plasma assisted atomic layer epitaxy of InN films by synchrotron x-ray methods
,”
J. Vac. Sci. Technol., A
35
(
3
),
031504
(
2017
).
17.
R.
Boichot
,
L.
Tian
,
M.-I.
Richard
,
A.
Crisci
,
A.
Chaker
,
V.
Cantelli
,
S.
Coindeau
,
S.
Lay
,
T.
Ouled
,
C.
Guichet
,
M. H.
Chu
,
N.
Aubert
,
G.
Ciatto
,
E.
Blanquet
,
O.
Thomas
,
J.-L.
Deschanvres
,
D. D.
Fong
, and
H.
Renevier
, “
Evolution of crystal structure during the initial stages of ZnO atomic layer deposition
,”
Chem. Mater.
28
(
2
),
592
600
(
2016
).
18.
R.
Methaapanon
,
S. M.
Geyer
,
S.
Brennan
, and
S. F.
Bent
, “
Size dependent effects in nucleation of Ru and Ru oxide thin films by atomic layer deposition measured by synchrotron radiation X-ray diffraction
,”
Chem. Mater.
25
(
17
),
3458
3463
(
2013
).
19.
T.-B.
Hur
,
Y.-H.
Hwang
,
H.-K.
Kim
, and
H.-L.
Park
, “
Study of the structural evolution in ZnO thin film by in situ synchrotron x-ray scattering
,”
J. Appl. Phys.
96
(
3
),
1740
1742
(
2004
).
20.
D. D.
Fong
,
J. A.
Eastman
,
S. K.
Kim
,
T. T.
Fister
,
M. J.
Highland
,
P. M.
Baldo
, and
P. H.
Fuoss
, “
In situ synchrotron x-ray characterization of ZnO atomic layer deposition
,”
Appl. Phys. Lett.
97
(
19
),
191904
(
2010
).
21.
H.-B.-R.
Lee
,
Y. J.
Park
,
S.
Baik
, and
H.
Kim
, “
Initial stage growth during plasma-enhanced atomic layer deposition of cobalt
,”
Chem. Vap. Deposition
18
(
1–3
),
41
45
(
2012
).
22.
J. A.
Klug
,
M. S.
Weimer
,
J. D.
Emery
,
A.
Yanguas-Gil
,
S.
Seifert
,
C. M.
Schlepütz
,
A. B. F.
Martinson
,
J. W.
Elam
,
A. S.
Hock
, and
T. A.
Proslier
, “
Modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes
,”
Rev. Sci. Instrum.
86
(
11
),
113901
(
2015
).
23.
S. M.
Geyer
,
R.
Methaapanon
,
R. W.
Johnson
,
W.-H.
Kim
,
D. G.
Van Campen
,
A.
Metha
, and
S. F.
Bent
, “
An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis
,”
Rev. Sci. Instrum.
85
(
5
),
055116
(
2014
).
24.
S. M.
Geyer
,
R.
Methaapanon
,
R.
Johnson
,
S.
Brennan
,
M. F.
Toney
,
B.
Clemens
, and
S.
Bent
, “
Structural evolution of platinum thin films grown by atomic layer deposition
,”
J. Appl. Phys.
116
(
6
),
064905
(
2014
).
25.
K.
Kitahara
,
M. O.
Masashi Ozeki
, and
K. N.
Kazuo Nakajima
, “
Reflection high-energy electron diffraction of heteroepitaxy in chemical vapor deposition reactor: Atomic-layer epitaxy of GaAs, AlAs and GaP on Si
,”
Jpn. J. Appl. Phys.
32
(
3R
),
1051
1055
(
1993
).
26.
T.
Yao
, “
Dynamic reflection high-energy electron diffraction observations of the atomic layer epitaxy growth of Zn chaleogenides
,”
Jpn. J. Appl. Phys.
25
(
12A
),
L942
(
1986
).
27.
Z.
Zhu
,
M.
Hagino
,
K.
Uesugi
,
S.
Kamiyama
,
M.
Fujimoto
, and
T.
Yao
, “
Surface processes in ALE and MBE growth of ZnSe: Correlation of RHEED intensity variation with surface coverage
,”
Jpn. J. Appl. Phys.
28
(
9R
),
1659
(
1989
).
28.
S.
Hu
,
E. L.
Lin
,
A. K.
Hamze
,
A.
Posadas
,
H.
Wu
,
D. J.
Smith
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Zintl layer formation during perovskite atomic layer deposition on Ge (001)
,”
J. Chem. Phys.
146
(
5
),
052817
(
2017
).
29.
J. W.
Park
and
S. J.
Kim
, “
Reflective high-energy electron diffraction investigation of the crystallization of ultra-thin oxides
,”
J. Korean Phys. Soc.
47
(
2
),
L182
L184
(
2005
).
30.
T. Q.
Ngo
,
N. J.
Goble
,
A.
Posadas
,
K. J.
Kormondy
,
S.
Lu
,
M. D.
McDaniel
,
J.
Jordan-Sweet
,
D. J.
Smith
,
X. P. A.
Gao
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Quasi-two-dimensional electron gas at the interface of γ-Al2O3/SrTiO3 heterostructures grown by atomic layer deposition
,”
J. Appl. Phys.
118
(
11
),
115303
(
2015
).
31.
P.-Y.
Chen
,
A. B.
Posadas
,
S.
Kwon
,
Q.
Wang
,
M. J.
Kim
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Cubic crystalline erbium oxide growth on GaN(0001) by atomic layer deposition
,”
J. Appl. Phys.
122
(
21
),
215302
(
2017
).
32.
M. D.
McDaniel
,
C.
Hu
,
S.
Lu
,
T. Q.
Ngo
,
A.
Posadas
,
A.
Jiang
,
D. J.
Smith
,
E. T.
Yu
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Atomic layer deposition of crystalline SrHfO3 directly on Ge (001) for high-k dielectric applications
,”
J. Appl. Phys.
117
(
5
),
054101
(
2015
).
33.
E. L.
Lin
,
A. B.
Posadas
,
L.
Zheng
,
J.
Elliott Ortmann
,
S.
Abel
,
J.
Fompeyrine
,
K.
Lai
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Atomic layer deposition of epitaxial ferroelectric barium titanate on Si(001) for electronic and photonic applications
,”
J. Appl. Phys.
126
(
6
),
064101
(
2019
).
34.
T. T.
Le
,
C. H.
Lam
,
A. B.
Posadas
,
A. A.
Demkov
, and
J. G.
Ekerdt
, “
Epitaxial growth by atomic layer deposition and properties of high- k barium strontium titanate on zintl-templated Ge (001) substrates
,”
J. Vac. Sci. Technol., A
40
(
1
),
012401
(
2022
).
35.
R. G.
Bankras
, “
In-situ RHEED and characterization of ALD Al2O3 gate dielectrics
,”
Ph.D. dissertation (University of Twente
,
2006
).
36.
R.
Bankras
,
J.
Holleman
,
J.
Schmitz
,
M.
Sturm
,
A.
Zinine
,
H.
Wormeester
, and
B.
Poelsema
, “
In situ reflective high-energy electron diffraction analysis during the initial stage of a trimethylaluminum/water ALD process
,”
Chem. Vap. Deposition
12
(
5
),
275
279
(
2006
).
37.
A.
Ichimiya
and
P. I.
Cohen
,
Reflection High-Energy Electron Diffraction
(
Cambridge University Press
,
2004
).
38.
D. L.
Smith
, “
Mean free path
,” in
Thin Film Deposition: Principles and Practice
(
McGraw-Hill
,
Boston
,
1995
), pp.
23
25
.
39.
J. W.
Elam
,
M. D.
Groner
, and
S. M.
George
, “
Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition
,”
Rev. Sci. Instrum.
73
(
8
),
2981
(
2002
).
40.
S.
Singh
,
D.
Singh
, and
M.
Singh
, “
Synthesis of nanostructured thin films for resolution and diffraction/camera length calibration of transmission electron microscopes
,”
Indian J. Pure Appl. Phys.
57
(
3
),
157
165
(
2019
); available at http://op.niscpr.res.in/index.php/IJPAP/article/view/22022.
41.
M. S.
Zei
,
Y.
Nakai
,
G.
Lehmpfuhl
, and
D. M.
Kolb
, “
The structure of gold and silver films evaporated on glass: A leed and rheed study
,”
J. Electroanal. Chem. Interfacial Electrochem.
150
(
1–2
),
201
208
(
1983
).
42.
X.-Y.
Zhang
,
C.-H.
Hsu
,
S.-Y.
Lien
,
W.-Y.
Wu
,
S.-L.
Ou
,
S.-Y.
Chen
,
W.
Huang
,
W.-Z.
Zhu
,
F.-B.
Xiong
, and
S.
Zhang
, “
Temperature-dependent HfO2/Si interface structural evolution and its mechanism
,”
Nanoscale Res. Lett.
14
(
1
),
83
(
2019
).
43.
X.-Y.
Zhang
,
J.
Han
,
D.-C.
Peng
,
Y.-J.
Ruan
,
W.-Y.
Wu
,
D.-S.
Wuu
,
C.-J.
Huang
,
S.-Y.
Lien
, and
W.-Z.
Zhu
, “
Crystallinity effect on electrical properties of PEALD–HfO2 thin films prepared by different substrate temperatures
,”
Nanomaterials
12
(
21
),
3890
(
2022
).
44.
T. S.
Win
,
A. P.
Kuzemenko
,
V. V.
Rodionov
, and
M. M.
Than
, “
Effect of the annealing temperature on the structural properties of hafnium nanofilms by magnetron sputtering
,”
J. Phys.: Conf. Ser.
2064
,
1
7
(
2021
).
45.
E. P.
Gusev
,
C.
Cabral
,
M.
Copel
,
C.
D’Emic
, and
M.
Gribelyuk
, “
Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications
,”
Microelectron. Eng.
69
(
2–4
),
145
151
(
2003
).
46.
J.
Aarik
,
A.
Aidla
,
H.
Mändar
,
T.
Uustare
,
K.
Kukli
, and
M.
Schuisky
, “
Phase transformations in hafnium dioxide thin films grown by atomic layer deposition at high temperatures
,”
Appl. Surf. Sci.
173
(
1–2
),
15
21
(
2001
).
You do not currently have access to this content.