Lyophobic heterogeneous systems, based on porous fluids made of ordered nanoporous particles immersed in a non-wetting liquid, constitute systems of interest for exploring wetting, drying, and coupled transport phenomena in nanometric confinement. To date, most experimental studies on the forced filling and spontaneous emptying of lyophobic nanometric pores, at pressures of several tens of MPa, have been conducted in a quasi-static regime. However, some studies have shown that dynamical measurements are essential to shed light on the rich physics of these phenomena. We describe here a dynamical calo-porosimeter that allows for the simultaneous mechanical and calorimetric characterization of filling and emptying cycles over four decades of timescales, ranging from a few milliseconds to 10 seconds. This thermally regulated instrument can be operated between −5 and 70°C. It also enables the study of a given porous material successively with different liquids by switching from one to another. The characterization of wetting dynamics, the study of slow kinetics due to changes in solute concentration, and the rapid measurement of the heat of wetting, among other thermal properties, are presented as examples of the possible applications of this apparatus.

1.
E. W.
Washburn
, “
Note on a method of determining the distribution of pore sizes in a porous material
,”
Proc. Natl. Acad. Sci. U. S. A.
7
,
115
116
(
1921
).
2.
H. L.
Ritter
and
L.
Drake
, “
Pressure porosimeter and determination of complete macropore-size distributions. Pressure porosimeter and determination of complete macropore-size distributions
,”
Ind. Eng. Chem., Anal. Ed.
17
,
782
786
(
1945
).
3.
J.
Van Brakel
,
S.
Modry
, and
M.
Svata
, “
Mercury porosimetry: State of the art
,”
Powder Technol.
29
,
1
12
(
1981
).
4.
V.
Eroshenko
,
R. C.
Regis
,
M.
Soulard
, and
J.
Patarin
, “
Energetics: A new field of applications for hydrophobic zeolites
,”
J. Am. Chem. Soc.
123
,
8129
8130
(
2001
).
5.
A.
Astafan
,
C.
Dirand
,
A.
Ryzhikov
,
H.
Nouali
,
T. J.
Daou
,
C.
Marichal
,
J. P.
Bellat
,
I.
Bezverkhyy
, and
G.
Chaplais
, “
Intrusion of water in ZIF-8: Evidence of the thermodynamic instability under high pressure
,”
J. Phys. Chem. C
127
,
17249
17260
(
2023
).
6.
Y.
Sun
,
Y.
Li
, and
J. C.
Tan
, “
Framework flexibility of ZIF-8 under liquid intrusion: Discovering time-dependent mechanical response and structural relaxation
,”
Phys. Chem. Chem. Phys.
20
,
10108
10113
(
2018
).
7.
L.
Guillemot
,
T.
Biben
,
A.
Galarneau
,
G.
Vigier
, and
É.
Charlaix
, “
Activated drying in hydrophobic nanopores and the line tension of water
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
19557
19562
(
2012
).
8.
L.
Guillemot
,
A.
Galarneau
,
G.
Vigier
,
T.
Abensur
, and
É.
Charlaix
, “
New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems
,”
Rev. Sci. Instrum.
83
,
105105
(
2012
).
9.
N.
Ferreira de Souza
,
C.
Picard
,
L. F. M.
Franco
, and
B.
Coasne
, “
Thermal conductivity of a fluid-filled nanoporous material: Underlying molecular mechanisms and the rattle effect
,”
J. Phys. Chem. B
128
,
2516
2527
(
2024
).
10.
S.
Liu
,
J.
Liu
,
X.
Hou
,
T.
Xu
,
J.
Tong
,
J.
Zhang
,
B.
Ye
, and
B.
Liu
, “
Porous liquid: A stable ZIF-8 colloid in ionic liquid with permanent porosity
,”
Langmuir
34
,
3654
3660
(
2018
).
11.
T.
Karbowiak
,
C.
Paulin
, and
J.-P.
Bellat
, “
Determination of water intrusion heat in hydrophobic microporous materials by high pressure calorimetry
,”
Microporous Mesoporous Mater.
134
,
8
15
(
2010
).
12.
Y.
Grosu
,
G.
Renaudin
,
V.
Eroshenko
,
J.-M.
Nedelec
, and
J.-P.
Grolier
, “
Synergetic effect of temperature and pressure on energetic and structural characteristics of {ZIF-8 + water} molecular spring
,”
Nanoscale
7
,
8803
8810
(
2015
).
13.
A. R.
Lowe
,
P.
Sleczkowski
,
E.
Arkan
,
A.
Le Donne
,
L.
Bartolomé
,
E.
Amayuelas
,
P.
Zajdel
,
M.
Chorazewski
,
S.
Meloni
, and
Y.
Grosu
, “
Exploring the heat of water intrusion into a metal–organic framework by experiment and simulation
,”
ACS Appl. Mater. Interfaces
16
,
5286
5293
(
2024
).
14.
Y.
Sun
,
S. M.
Rogge
,
A.
Lamaire
,
S.
Vandenbrande
,
J.
Wieme
,
C. R.
Siviour
,
V.
Van Speybroeck
, and
J. C.
Tan
, “
High-rate nanofluidic energy absorption in porous zeolitic frameworks
,”
Nat. Mater.
20
,
1015
1023
(
2021
).
15.
A.
Lowe
,
N.
Tsyrin
,
M.
Chorążewski
,
P.
Zajdel
,
M.
Mierzwa
,
J. B.
Leão
,
M.
Bleuel
,
T.
Feng
,
D.
Luo
,
M.
Li
,
D.
Li
,
V.
Stoudenets
,
S.
Pawlus
,
A.
Faik
, and
Y.
Grosu
, “
Effect of flexibility and nanotriboelectrification on the dynamic reversibility of water intrusion into nanopores: Pressure-transmitting fluid with frequency-dependent dissipation capability
,”
ACS Appl. Mater. Interfaces
11
,
40842
40849
(
2019
).
16.
M.
Michelin-Jamois
,
C.
Picard
,
G.
Vigier
, and
E.
Charlaix
, “
Giant osmotic pressure in the forced wetting of hydrophobic nanopores
,”
Phys. Rev. Lett.
115
,
036101
(
2015
).
17.
C. D.
Dobrzanski
,
B.
Gurevich
, and
G. Y.
Gor
, “
Elastic properties of confined fluids from molecular modeling to ultrasonic experiments on porous solids
,”
Appl. Phys. Rev.
8
,
021317
(
2021
).
18.
V. D.
Borman
,
A. A.
Belogorlov
,
G. V.
Lisichkin
,
V. N.
Tronin
, and
V. I.
Troyan
, “
Investigation of the dynamics of a percolation transition under rapid compression of a nanoporous body-nonwetting liquid system
,”
J. Exp. Theor. Phys.
108
,
389
410
(
2009
).
19.
V. A.
Eroshenko
,
I.
Piatiletov
,
L.
Coiffard
, and
V.
Stoudenets
, “
A new paradigm of mechanical energy dissipation. Part 2: Experimental investigation and effectiveness of a novel car damper
,”
Proc. Inst. Mech. Eng., Part D
221
,
301
312
(
2007
).
20.
Y.
Sun
,
Z.
Guo
,
J.
Xu
,
X.
Xu
,
C.
Liu
, and
Y.
Li
, “
A candidate of mechanical energy mitigation system: Dynamic and quasi-static behaviors and mechanisms of zeolite β/water system
,”
Mater. Des.
66
,
545
551
(
2015
).
21.
B.
Xu
,
Y.
Qiao
, and
X.
Chen
, “
Mitigating impact/blast energy via a novel nanofluidic energy capture mechanism
,”
J. Mech. Phys. Solids
62
,
194
208
(
2014
).
22.
A.
Cerepi
,
L.
Humbert
, and
R.
Burlot
, “
Dynamics of capillary flow and transport properties in porous media by time-controlled porosimetry
,”
Colloids Surf., A
206
,
425
444
(
2002
).
23.
N.
Mizoshita
,
T.
Tani
, and
S.
Inagaki
, “
Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors
,”
Chem. Soc. Rev.
40
,
789
800
(
2011
).
24.
J. G.
Croissant
,
X.
Cattoën
,
M.
Wong Chi Man
,
J.-O.
Durand
, and
N. M.
Khashab
, “
Syntheses and applications of periodic mesoporous organosilica nanoparticles
,”
Nanoscale
7
,
20318
20334
(
2015
).
25.
C.
Picard
,
V.
Gérard
,
L.
Michel
,
X.
Cattoën
, and
E.
Charlaix
, “
Dynamics of heterogeneous wetting in periodic hybrid nanopores
,”
J. Chem. Phys.
154
,
164710
(
2021
).
26.
L.
Michel
,
L.
Ludescher
,
V.
Cristiglio
,
E.
Charlaix
,
O.
Paris
, and
C.
Picard
, “
Bowtie-shaped deformation isotherm of superhydrophobic cylindrical mesopores
,”
Langmuir
38
,
211
220
(
2022
).
27.
E.
Amayuelas
,
M.
Tortora
,
L.
Bartolomé
,
J. D.
Littlefair
,
G.
Paulo
,
A.
Le Donne
,
B.
Trump
,
A. A.
Yakovenko
,
M.
Chorazewski
,
A.
Giacomello
,
P.
Zajdel
,
S.
Meloni
, and
Y.
Grosu
, “
Mechanism of water intrusion into flexible ZIF-8: Liquid is not vapor
,”
Nano Lett.
23
,
5430
5436
(
2023
).
28.
M.
Michelin-Jamois
,
C.
Picard
,
G.
Vigier
, and
E.
Charlaix
, “
Giant osmotic pressure in the forced wetting of hydrophobic nanopores
,”
Phys. Rev. Lett.
115
,
036101
(
2015
).
29.
J.
Jaeger
, “
Conduction of heat in an infinite region bounded internally by a circular cylinder of a perfect conductor
,”
Aust. J. Phys.
9
,
167
179
(
1956
).
30.
R. L.
Hamilton
and
O. K.
Crosser
, “
Thermal conductivity of heterogeneous two-component systems
,”
Ind. Eng. Chem. Fundam.
1
,
187
191
(
1962
).
31.
A.
Siria
,
P.
Poncharal
,
A.-l.
Biance
,
R.
Fulcrand
,
X.
Blase
,
S.
Purcell
, and
L.
Bocquet
, “
Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube
,”
Nature
494
,
455
458
(
2013
).
32.
Y.
You
,
A.
Ismail
,
G.-H.
Nam
,
S.
Goutham
,
A.
Keerthi
, and
B.
Radha
, “
Angstrofluidics: Walking to the limit
,”
Annu. Rev. Mater. Res.
52
,
189
218
(
2022
).
33.
S.
Marion
,
M.
Macha
,
S. J.
Davis
,
A.
Chernev
, and
A.
Radenovic
, “
Wetting of nanopores probed with pressure
,”
Phys. Chem. Chem. Phys.
23
,
4975
4987
(
2021
).
34.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
805
(
2009
).
35.
H.
Perrin
,
R.
Lhermerout
,
K.
Davitt
,
E.
Rolley
, and
B.
Andreotti
, “
Defects at the nanoscale impact contact line motion at all scales
,”
Phys. Rev. Lett.
116
,
184502
(
2016
).
36.
T.
Blake
,
J.-C.
Fernández-Toledano
, and
J.
De Coninck
, “
A possible way to extract the dynamic contact angle at the molecular scale from that measured experimentally
,”
J. Colloid Interface Sci.
629
,
660
669
(
2023
).
37.
S.
Franiatte
,
P.
Tordjeman
, and
T.
Ondarçuhu
, “
Wetting at the nanoscale: Molecular mobility induced by contact line forces
,”
Langmuir
38
,
2614
2625
(
2022
).
38.
S.
Franiatte
,
G.
Paredes
,
T.
Ondarçuhu
, and
P.
Tordjeman
, “
Energy dissipation of a contact line moving on a nanotopographical defect
,”
Soft Matter
20
,
3798
3805
(
2024
).
39.
H.
Kusudo
,
T.
Omori
,
L.
Joly
, and
Y.
Yamaguchi
, “
The receding contact line cools down during dynamic wetting
,”
J. Chem. Phys.
159
,
161102
(
2023
).
40.
A.
Giacomello
, “
What keeps nanopores boiling
,”
J. Chem. Phys.
159
,
110902
(
2023
).
You do not currently have access to this content.