Transient Raman thermometry improves on its steady-state counterpart by eliminating the error-prone steps of temperature calibration and laser absorption measurement. However, the accompanying complex heat transfer process often requires numerical analysis, such as the finite element method, to decipher the measured data. This step can be time-consuming, inconvenient, and difficult to derive a physical understanding of the heat transfer process involved. In this work, the finite element method is replaced by fitting the measured data to an analytical three-dimensional heat transfer model. This process can be completed in a few seconds. Using this approach, the in-plane thermal conductivity of two bulk layered materials and the interfacial thermal conductance between two-dimensional materials and quartz have been successfully measured. Based on our model, we performed an analytical quantitative sensitivity analysis for transient Raman thermometry to discover new physical insights. The sensitivity of the in-plane thermal conductivity of bulk layered materials is dictated by the ratio between the spot radius and heat spreading distance. The sensitivity of the interfacial thermal conductance between two-dimensional materials and quartz is determined by its conductance value. In addition, the uncertainty of the measured value contributed by the uncertainty of the input parameters can be efficiently estimated using our model. Our model provides an efficient data and sensitivity analysis method for the transient Raman thermometry technique to enable high throughput measurements, facilitate designing experiments, and derive physical interpretations of the heat transfer process.

1.
A. C.
Johnson
,
J. D.
Georgaras
,
X.
Shen
,
H.
Yao
,
A. P.
Saunders
,
H. J.
Zeng
,
H.
Kim
,
A.
Sood
,
T. F.
Heinz
,
A. M.
Lindenberg
,
D.
Luo
,
F. H.
da Jornada
, and
F.
Liu
, “
Hidden phonon highways promote photoinduced interlayer energy transfer in twisted transition metal dichalcogenide heterostructures
,”
Sci. Adv.
10
(
4
),
8819
(
2024
).
2.
C.
Liu
,
C.
Wu
,
X. Y.
Tan
,
Y.
Tao
,
Y.
Zhang
,
D.
Li
,
J.
Yang
,
Q.
Yan
, and
Y.
Chen
, “
Unexpected doping effects on phonon transport in quasi-one-dimensional van der Waals crystal TiS3 nanoribbons
,”
Nat. Commun.
14
(
1
),
5597
(
2023
).
3.
Y.
Zhang
,
Q.
Lv
,
H.
Wang
,
S.
Zhao
,
Q.
Xiong
,
R.
Lv
, and
X.
Zhang
, “
Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction
,”
Science
378
(
6616
),
169
175
(
2022
).
4.
S.
Xu
,
A.
Fan
,
H.
Wang
,
X.
Zhang
, and
X.
Wang
, “
Raman-Based nanoscale thermal transport characterization: A critical review
,”
Int. J. Heat Mass Transfer
154
,
119751
(
2020
).
5.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
, “
Superior thermal conductivity of single-layer graphene
,”
Nano Lett.
8
(
3
),
902
907
(
2008
).
6.
J.
Liu
,
Y.
Hu
, and
X.
Zhang
, “
Characterization of thermal transport and laser absorption properties of an individual pristine SWCNT
,”
Int. Commun. Heat Mass Transfer
106
,
9
14
(
2019
).
7.
H.
Zobeiri
,
R.
Wang
,
T.
Wang
,
H.
Lin
,
C.
Deng
, and
X.
Wang
, “
Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe2
,”
Int. J. Heat Mass Transfer
133
,
1074
1085
(
2019
).
8.
P.
Yuan
,
R.
Wang
,
H.
Tan
,
T.
Wang
, and
X.
Wang
, “
Energy transport state resolved Raman for probing interface energy transport and hot carrier diffusion in few-layered MoS2
,”
ACS Photonics
4
(
12
),
3115
3129
(
2017
).
9.
T.
Wang
,
S.
Xu
,
D. H.
Hurley
,
Y.
Yue
, and
X.
Wang
, “
Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement
,”
Opt. Lett.
41
(
1
),
80
(
2016
).
10.
S.
Xu
,
T.
Wang
,
D.
Hurley
,
Y.
Yue
, and
X.
Wang
, “
Development of time-domain differential Raman for transient thermal probing of materials
,”
Opt. Express
23
(
8
),
10040
(
2015
).
11.
R.
Wang
,
N.
Hunter
,
H.
Zobeiri
,
S.
Xu
, and
X.
Wang
, “
Critical problems faced in Raman-based energy transport characterization of nanomaterials
,”
Phys. Chem. Chem. Phys.
24
(
37
),
22390
22404
(
2022
).
12.
J.
Liu
,
M.
Han
,
R.
Wang
,
S.
Xu
, and
X.
Wang
, “
Photothermal phenomenon: Extended ideas for thermophysical properties characterization
,”
J. Appl. Phys.
131
(
6
),
065107
(
2022
).
13.
S.
Sandell
,
E.
Chávez-Ángel
,
A.
El Sachat
,
J.
He
,
C. M.
Sotomayor Torres
, and
J.
Maire
, “
Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures
,”
J. Appl. Phys.
128
(
13
),
131101
(
2020
).
14.
R.
An
,
J.
Zhao
,
J.
Yang
,
S.
Zhai
,
L.
Dai
,
Q.
Wang
,
J.
Li
,
W.
Hu
,
G.
Sun
,
Y.
Fan
,
S.
Wu
, and
G.
Niu
, “
Accurate and wide-range measurement of thermal conductivity of semiconductor materials by laser-excited Raman spectroscopy
,”
J. Appl. Phys.
134
(
1
),
015103
(
2023
).
15.
H.
Zobeiri
,
N.
Hunter
,
N.
Van Velson
,
C.
Deng
,
Q.
Zhang
, and
X.
Wang
, “
Interfacial thermal resistance between nm-thick MoS2 and quartz substrate: A critical revisit under phonon mode-wide thermal non-equilibrium
,”
Nano Energy
89
,
106364
(
2021
).
16.
Z.
Deng
,
J.
Cai
,
G.
Wang
, and
J.
Liu
, “
Interfacial thermal resistance measurement sensitivity in time and spatial domains of FET-Raman for supported 2D materials
,”
Int. J. Heat Mass Transfer
230
,
125810
(
2024
).
17.
Q. Y.
Li
,
W. G.
Ma
, and
X.
Zhang
, “
Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials
,”
Int. J. Heat Mass Transfer
95
,
956
963
(
2016
).
18.
Q. Y.
Li
,
K.
Xia
,
J.
Zhang
,
Y.
Zhang
,
Q.
Li
,
K.
Takahashi
, and
X.
Zhang
, “
Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method
,”
Nanoscale
9
(
30
),
10784
10793
(
2017
).
19.
Q. Y.
Li
,
X.
Zhang
, and
K.
Takahashi
, “
Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures
,”
Int. J. Heat Mass Transfer
125
,
1230
1239
(
2018
).
20.
S. H.
Goushehgir
, “
Simple exact analytical solution of laser-induced thermal transport in supported 2D materials
,”
Int. Commun. Heat Mass Transfer
128
,
105592
(
2021
).
21.
J.
Yang
,
E.
Ziade
, and
A. J.
Schmidt
, “
Modeling optical absorption for thermoreflectance measurements
,”
J. Appl. Phys.
119
(
9
),
095107
(
2016
).
22.
X.
Qian
,
Z.
Ding
,
J.
Shin
,
A. J.
Schmidt
, and
G.
Chen
, “
Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance
,”
Rev. Sci. Instrum.
91
(
6
),
064903
(
2020
).
23.
J.
Tu
,
M. A.
Haque
,
D.
Baran
, and
W. L.
Ong
, “
Logarithmic sensitivity ratio elucidates thermal transport physics in multivariate thermoreflectance experiments
,”
Fundam. Res.
(published online)
(
2023
).
24.
J.
Tu
and
W. L.
Ong
, “
A universal sensitivity matrix reduction technique (SMART) to uncover governing thermal transport relationships
,”
Int. J. Heat Mass Transfer
206
,
123949
(
2023
).
25.
J. J.
Bae
,
H. Y.
Jeong
,
G. H.
Han
,
J.
Kim
,
H.
Kim
,
M. S.
Kim
,
B. H.
Moon
,
S. C.
Lim
, and
Y. H.
Lee
, “
Thickness-dependent in-plane thermal conductivity of suspended MoS2 grown by chemical vapor deposition
,”
Nanoscale
9
(
7
),
2541
2547
(
2017
).
26.
H.
Yan
,
T.
Yu
,
H.
Li
,
Z.
Li
,
H.
Tang
,
H.
Hu
,
H.
Yu
, and
S.
Yin
, “
Synthesis of large-area monolayer and few-layer MoSe2 continuous films by chemical vapor deposition without hydrogen assistance and formation mechanism
,”
Nanoscale
13
(
19
),
8922
8930
(
2021
).
27.
T.
Wang
,
M.
Han
,
R.
Wang
,
P.
Yuan
,
S.
Xu
, and
X.
Wang
, “
Characterization of anisotropic thermal conductivity of suspended nm-thick black phosphorus with frequency-resolved Raman spectroscopy
,”
J. Appl. Phys.
123
(
14
),
145104
(
2018
).
28.
X.
Zhang
,
D.
Sun
,
Y.
Li
,
G. H.
Lee
,
X.
Cui
,
D.
Chenet
,
Y.
You
,
T. F.
Heinz
, and
J. C.
Hone
, “
Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman technique
,”
ACS Appl. Mater. Interfaces
7
(
46
),
25923
25929
(
2015
).
29.
J.
Zhang
,
Z.
Peng
,
A.
Soni
,
Y.
Zhao
,
Y.
Xiong
,
B.
Peng
,
J.
Wang
,
M. S.
Dresselhaus
, and
Q.
Xiong
, “
Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets
,”
Nano Lett.
11
(
6
),
2407
2414
(
2011
).
30.
R.
Wang
,
H.
Zobeiri
,
Y.
Xie
,
X.
Wang
,
X.
Zhang
, and
Y.
Yue
, “
Distinguishing optical and acoustic phonon temperatures and their energy coupling factor under photon excitation in nm 2D materials
,”
Adv. Sci.
7
(
13
),
2000097
(
2020
).
31.
J. A.
Malen
,
K.
Baheti
,
T.
Tong
,
Y.
Zhao
,
J. A.
Hudgings
, and
A.
Majumdar
, “
Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance
,”
J. Heat Transfer
133
(
8
),
081601
(
2011
).
32.
Y. K.
Koh
,
S. L.
Singer
,
W.
Kim
,
J. M. O.
Zide
,
H.
Lu
,
D. G.
Cahill
,
A.
Majumdar
, and
A. C.
Gossard
, “
Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors
,”
J. Appl. Phys.
105
(
5
),
054303
(
2009
).
33.
P.
Jiang
,
X.
Qian
, and
R.
Yang
, “
Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach
,”
Rev. Sci. Instrum.
88
(
7
),
074901
(
2017
).
34.
M. S.
Ullah
,
A. H.
Bin Yousuf
,
A. D.
Es-Sakhi
, and
M. H.
Chowdhury
, “
Analysis of optical and electronic properties of MoS2 for optoelectronics and FET applications
,”
AIP Conf. Proc.
1957
,
020001
(
2018
).
35.
J.
Navrátil
,
J.
Horák
,
T.
Plecháček
,
S.
Kamba
,
P.
Lošt’ák
,
J. S.
Dyck
,
W.
Chen
, and
C.
Uher
, “
Conduction band splitting and transport properties of Bi2Se3
,”
J. Solid State Chem.
177
(
4–5
),
1704
1712
(
2004
).
36.
D.
Fournier
,
M.
Marangolo
,
M.
Eddrief
,
N. N.
Kolesnikov
, and
C.
Fretigny
, “
Straightforward measurement of anisotropic thermal properties of a Bi2Se3 single crystal
,”
J. Phys.: Condens.Matter
30
(
11
),
115701
(
2018
).
37.
J.
Humlíček
,
D.
Hemzal
,
A.
Dubroka
,
O.
Caha
,
H.
Steiner
,
G.
Bauer
, and
G.
Springholz
, “
Raman and interband optical spectra of epitaxial layers of the topological insulators Bi2Te3 and Bi2Se3 on BaF2 substrates
,”
Phys. Scr.
2014
,
014007
(n.d.).
38.
X.
Wang
,
M.
Jeong
,
A. J. H.
McGaughey
, and
J. A.
Malen
, “
Reducing the uncertainty caused by the laser spot radius in frequency-domain thermoreflectance measurements of thermal properties
,”
Rev. Sci. Instrum.
93
(
2
),
023001
(
2022
).
39.
M. A.
Khashan
and
A. Y.
Nassif
, “
Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3 μm
,”
Opt. Commun.
188
(
1–4
),
129
139
(
2001
).
40.
N.
Hunter
,
N.
Azam
,
H.
Zobeiri
,
N.
Van Velson
,
M.
Mahjouri-Samani
, and
X.
Wang
, “
Interface thermal resistance between monolayer WSe2 and SiO2: Raman probing with consideration of optical–acoustic phonon nonequilibrium
,”
Adv. Mater. Interfaces
9
(
7
),
2102059
(
2022
).
41.
C. M.
Frausto-Avila
,
V. M.
Arellano-Arreola
,
J. M.
Yañez Limon
,
A.
De Luna-Bugallo
,
S.
Gomès
, and
P. O.
Chapuis
, “
Thermal boundary conductance of CVD-grown MoS2 monolayer-on-silica substrate determined by scanning thermal microscopy
,”
Appl. Phys. Lett.
120
(
26
),
262202
(
2022
).
42.
E.
Yalon
,
C. J.
McClellan
,
K. K. H.
Smithe
,
M.
Muñoz Rojo
,
R. L.
Xu
,
S. V.
Suryavanshi
,
A. J.
Gabourie
,
C. M.
Neumann
,
F.
Xiong
,
A. B.
Farimani
, and
E.
Pop
, “
Energy dissipation in monolayer MoS2 electronics
,”
Nano Lett.
17
(
6
),
3429
3433
(
2017
).
43.
E.
Yalon
,
B.
Aslan
,
K. K. H.
Smithe
,
C. J.
McClellan
,
S. V.
Suryavanshi
,
F.
Xiong
,
A.
Sood
,
C. M.
Neumann
,
X.
Xu
,
K. E.
Goodson
,
T. F.
Heinz
, and
E.
Pop
, “
Temperature-dependent thermal boundary conductance of monolayer MoS2 by Raman thermometry
,”
ACS Appl. Mater. Interfaces
9
(
49
),
43013
43020
(
2017
).
44.
E. S.
Landry
and
A. J. H.
McGaughey
, “
Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations
,”
Phys. Rev. B
80
(
16
),
165304
(
2009
).
45.
P.
Yuan
,
R.
Wang
,
T.
Wang
,
X.
Wang
, and
Y.
Xie
, “
Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS2: 2.4 to 37.8 nm
,”
Phys. Chem. Chem. Phys.
20
(
40
),
25752
25761
(
2018
).
46.
O. A.
Sergeev
,
A. G.
Shashkov
, and
A.
Umanskii
, “
Thermophysical properties of quartz glass
,”
J. Eng. Phys.
43
,
1375
(
1982
).
47.
M. W.
Chase
, Jr.
,
NIST-JANAF Thermochemical Tables
(
American Chemical Society
,
Washington, DC
,
1998
).
48.
Y.
Liang
,
B. T.
Diroll
,
K. L.
Wong
,
S. M.
Harvey
,
M.
Wasielewski
,
W. L.
Ong
,
R. D.
Schaller
, and
J. A.
Malen
, “
Differentiating thermal conductances at semiconductor nanocrystal/ligand and ligand/solvent interfaces in colloidal suspensions
,”
Nano Lett.
23
(
9
),
3687
3693
(
2023
).
49.
P.
Jiang
,
X.
Qian
, and
R.
Yang
, “
Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials
,”
J. Appl. Phys.
124
(
16
),
161103
(
2018
).
50.
K. T.
Regner
,
A. J. H.
McGaughey
, and
J. A.
Malen
, “
Analytical interpretation of nondiffusive phonon transport in thermoreflectance thermal conductivity measurements
,”
Phys. Rev. B
90
(
6
),
064302
(
2014
).
You do not currently have access to this content.