MAJIS (Moons and Jupiter Imaging Spectrometer) is the imaging spectrometer onboard ESA’s JUICE (JUpiter and ICy Moons Explorer) spacecraft that operates in the visible and near/mid-infrared between 0.5 and 5.54 μm. Before the launch of JUICE in April 2023, MAJIS underwent a comprehensive on-ground calibration campaign in between August and September 2021 in the IAS (Institut d’Astrophysique Spatiale, Université Paris-Saclay) calibration facilities. Among all the operations, calibration sequences using a set of natural mineral samples and synthetic reference materials were acquired in order to characterize MAJIS performances under conditions assumed to be close to certain future observation configurations. Here, we analyze these calibration measurements using comparison with laboratory reference spectra to quantify MAJIS spectral and spatial performances while observing these solid surfaces. We first assess the MAJIS absolute spectral calibration of the visible and near-infrared channel covering half of the wavelength range. We then quantify spectral performances in terms of global spectral slopes, band detection, band shape, and depth retrievals, over most of the spectral range using six mineral samples. We conclude that for most configurations, the MAJIS instrument demonstrates excellent spectral performances compliant with the requirements. MAJIS can, however, be affected by stray light contributions, notably for wavelengths lower than about 1.2 μm, and some performances of the instrument may then be significantly impacted depending on viewing conditions. In particular, we have identified cases of spectral contrast reduction up to 40%, absolute spectral shifts up to 2–3 nm, and spectral smile variability by +/1 nm. Finally, we used the MAJIS internal scanning mirror to test its ability to construct hyperspectral images of a few samples: we present the first band depth maps derived with MAJIS while observing a serpentine/carbonate sample, as well as an evaluation of MAJIS spatial point spread function. Overall, the analysis of MAJIS behavior while observing samples confirms most MAJIS expected performance requirements, while revealing subtle spectral perturbations that may be related to stray light and viewing conditions. These differences will be further investigated in-flight during the cruise, with a solar reflected target such as the Moon, as well as Jupiter before the JUICE orbital insertion.

1.
Altieri
,
F.
,
Filacchione
,
G.
,
Capaccioni
,
F.
,
Carli
,
C.
,
Dami
,
M.
,
Tommasi
,
L.
,
Aroldi
,
G.
,
Borrelli
,
D.
,
Barbis
,
A.
,
Baroni
,
M.
,
Pastorini
,
G.
,
Ficai Veltroni
,
I.
, and
Mugnuolo
,
R.
, “
The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. II. Spectral calibrations
,”
Rev. Sci. Instrum.
88
,
094503
(
2017
).
2.
Andrés
,
J. M.
and
Bona
M. T.
, “
ASTM clustering for improving coal analysis by near-infrared spectroscopy
,”
Talanta
70
,
711
719
(
2006
).
3.
Bishop
J. L.
,
Lane
M. D.
,
Dyar
M. D.
, and
Brown
A. J.
, “
Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas
,”
Clay Minerals
43
(
1
),
35
54
(
2008
).
4.
Cheng
,
H.
,
Liu
,
Q.
,
Yang
,
J.
,
Du
,
X.
, and
Frost
,
R. L.
, “
Influencing factors on kaolinite–potassium acetate intercalation complexes
,”
Appl. Clay Sci.
50
(
4
),
476
480
(
2010
).
5.
Clark
,
R. N.
,
King
,
T. V. V.
,
Klejwa
,
M.
,
Swayze
,
G. A.
, and
Vergo
,
N.
, “
High spectral resolution reflectance spectroscopy of minerals
,”
J. Geophys. Res.
95
,
12653
, (
1990
).
6.
Cloutis
,
E. A.
, “
Spectral reflectance properties of hydrocarbons: Remote-sensing implications
,”
Science
245
,
165
168
(
1989
).
7.
Farifteh
,
J.
,
Van der Meer
,
F.
,
Van der Meijde
,
M.
, and
Atzberger
,
C.
, “
Spectral characteristics of salt-affected soils: A laboratory experiment
,”
Geoderma
145
,
196
206
(
2008
).
8.
Filacchione
,
G.
,
Haffoud
,
P.
,
Poulet
,
F.
,
Piccioni
,
G.
,
Langevin
,
Y.
,
Tommasi
,
L.
,
Barbis
,
A.
,
Carter
,
J.
,
Guerri
,
I.
,
Dumesnil
,
C.
,
De Angelis
,
S.
,
Vincendon
,
M.
,
Stefani
,
S.
,
Pilorget
,
C.
,
Tosi
,
F.
, and
Rodriguez
,
S.
, “
Calibration of MAJIS (Moons and Jupiter imaging spectrometer): II. Spatial calibration
,”
Rev. Sci. Instrum.
95
,
041301
(
2024
).
9.
Gaffey
S. J.
, “
Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns); calcite, aragonite, and dolomite
,”
Am. Min.
71
(
1–2
),
151
162
(
1986
).
10.
Guerri
,
I.
,
Fabbri
,
A.
,
Tommasi
,
L.
,
Taiti
,
A.
,
Amoroso
,
M.
,
Mugnuolo
,
R.
,
Filacchione
,
G.
,
Fonti
,
S.
,
Piccioni
,
G.
,
Saggin
,
B.
,
Tosi
,
F.
, and
Zambelli
,
M.
, “
The optical design of the MAJIS instrument on board of the JUICE mission
,”
SPIE Proc.
10690
,
106901L
(
2018
).
11.
Haffoud
P.
,
Poulet
,
F.
,
Vincendon
,
M.
,
Filacchione
,
G.
,
Barbis
,
A.
,
Guiot
,
P.
,
Lecomte
,
B.
,
Langevin
,
Y.
,
Piccioni
,
G.
,
Dumesnil
,
C.
,
Rodriguez
,
S.
,
Carter
,
J.
,
Stefania
,
S.
,
Tommasi
,
L.
et al, “
Calibration of MAJIS (Moons and Jupiter imaging spectrometer): III. Spectral calibration
.
Rev. Sci. Instrum.
95
,
031301
(
2024
).
12.
Howari
,
F. M.
,
Goodell
,
P. C.
, and
Miyamoto
,
S.
, “
Spectral properties of salt crusts formed on saline soils
,”
J. Environ. Qual.
31
,
1453
1461
(
2002
).
13.
Hunt
,
G. R.
,
Salisbury
,
J. W.
, and
Lenhoff
,
C. J.
, “
Visible and near-infrared spectra of minerals and rocks. II. Carbonates
,”
Mod. Geol.
2
,
23
30
(
1971
).
14.
Langevin
,
Y.
,
Poulet
,
F.
,
Piccioni
,
G.
,
Filacchione
,
G.
,
Dumesnil
,
C.
,
Barbis
,
A.
,
Carter
,
J.
,
Haffoud
,
P.
,
Tommasi
,
L.
,
Vincendon
,
M.
,
De Angelis
,
S.
,
Guerri
,
I.
,
Pilorget
,
C.
,
Rodriguez
,
S.
,
Stefani
,
S.
,
Tosi
,
F.
,
Bolsée
,
D.
,
Cisneros
,
M.
,
Pereira
,
N.
,
Van Laeken
,
L.
, and
Carapelle
,
A.
, “
Calibration of MAJIS (Moons and Jupiter imaging spectrometer): IV. Radiometric calibration
,”
Rev. Sci. Instrum.
(unpublished) (
2024
).
15.
Longhi
,
I.
,
Sgavetti
,
M.
,
Chiari
,
R.
, and
Mazzoli
,
C.
, “
Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4–2.5 µm interval: A tool for hyperspectral data interpretation
,”
Int. J. Remote Sens.
22
,
3763
3782
(
2001
).
16.
Lugassi
,
R.
,
Ben-Dor
,
E.
, and
Eshel
,
G.
, “
Reflectance spectroscopy of soils post-heating-assessing thermal alterations in soil minerals
,”
Geoderma
213
,
268
279
(
2014
).
17.
Maupin
,
R.
,
Djouadi
,
Z.
,
Brunetto
,
R.
,
Lantz
,
C.
,
Aléon-Toppani
,
A.
, and
Vernazza
,
P.
, “
Vis-NIR reflectance microspectroscopy of IDPs
,”
Planet. Sci. J.
1
,
62
(
2020
).
18.
Moroz
,
L. V.
,
Arnold
,
G.
,
Korochantsev
,
A. V.
, and
Wäsch
,
R.
, “
Natural solid bitumens as possible analogs for cometary and asteroid organics: 1. Reflectance spectroscopy of pure bitumens
,”
Icarus
134
(
2
),
253
268
(
1998
).
19.
Melendez-Pastor
,
I.
,
Navarro-Pedreño
,
J.
,
Koch
,
M.
, and
Gómez
,
I.
, “
Applying imaging spectroscopy techniques to map saline soils with ASTER images
,”
Geoderma
158
,
55
65
(
2010
).
20.
Pommerol
,
A.
,
Schmitt
,
B.
,
Beck
,
P.
, and
Brissaud
,
O.
, “
Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy
,”
Icarus
204
(
1
),
114
136
(
2009
).
21.
Poulet
,
F.
et al, “
Moons and Jupiter imaging spectrometer (MAJIS) on Jupiter icy moons explorer (JUICE)
,”
Space Sci. Rev.
220
,
27
(
2024
).
22.
Poulet
,
F.
,
Langevin
,
Y.
, and
Piccioni
,
G.
, “
Calibration of the Moons and Jupiter imaging spectrometer (MAJIS): Introduction to the special collection and summary of the performances
,”
Rev. Sci. Instrum.
95
,
071601
(
2024
).
23.
Quirico
,
E.
,
Moroz
,
L. V.
,
Schmitt
,
B.
,
Arnold
,
G.
,
Faure
,
M.
,
Beck
,
P.
,
Bonal
,
L.
,
Ciarniello
,
M.
,
Capaccioni
,
F.
,
Filacchione
,
G.
,
Erard
,
S.
,
Leyrat
,
C.
,
Bockelée-Morvan
,
D.
,
Zinzi
,
A.
,
Palomba
,
E.
,
Drossart
,
P.
,
Tosi
,
F.
,
Capria
,
M. T.
,
De Sanctis
,
M. C.
,
Raponi
,
A.
, and
Taylor
,
F.
, “
Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer
,”
Icarus
272
,
32
47
(
2016
).
24.
Riu
,
L.
,
Pilorget
,
C.
,
Hamm
,
V.
,
Bibring
,
J.-P.
,
Lantz
,
C.
,
Loizeau
,
D.
,
Brunetto
,
R.
,
Carter
,
J.
,
Lequertier
,
G.
,
Lourit
,
L.
,
Okada
,
T.
,
Yogata
,
K.
,
Hatakeda
,
K.
,
Nakato
,
A.
, and
Yada
,
T.
, “
Calibration and performances of the MicrOmega instrument for the characterization of asteroid Ryugu returned samples
,”
Rev. Sci. Instrum.
93
,
054503
(
2022
).
25.
Sgavetti
,
M.
,
Pompilio
,
L.
, and
Meli
,
S.
, “
Reflectance spectroscopy (0.3–2.5 µm) at various scales for bulk-rock identification
,”
Geosphere
2
,
142
160
(
2006
).
26.
Sunshine
,
J. M.
, and
Pieters
,
C. M.
, “
Determining the composition of olivine from reflectance spectroscopy
,”
J. Geophys. Res.
103
(E6),
13675
13688
, (
1998
).
27.
Vincendon
,
M.
,
Guiot
,
P.
,
Lecomte
,
B.
,
Condamin
,
M.
,
Poulet
,
F.
,
Arondel
,
A.
,
Barbay
,
J.
,
Carter
,
J.
,
De Angelis
,
S.
,
Dumesnil
,
C.
,
Filacchione
,
G.
,
Haffoud
,
P.
,
Hansotte
,
J.
,
Langevin
,
Y.
,
Piccioni
,
G.
,
Pilorget
,
C.
,
Quirico
,
E.
, and
Rodriguez
,
S.
, “
Calibration of MAJIS (Moons and Jupiter imaging spectrometer): I. Setup and measurements
,”
Rev. Sci. Instrum.
(unpublished) (
2024
).
28.
Witasse
,
O.
et al, “
JUICE mission overview
,”
Space Sci. Rev.
(unpublished) (
2024
).
29.
Yitagesu
F. A.
,
van der Meer
F.
,
van der Werff
H.
, and
Hecker
C.
, “
Spectral characteristics of clay minerals in the 2.5–14 μm wavelength region
,”
Appl. Clay Sci.
53
(
4
),
581
591
(
2011
).
You do not currently have access to this content.