When exposed to high surface temperatures, engine lubricating oils degrade and may form solid deposits, which cause operational issues and increase shutdown time and maintenance costs. Despite its being a common issue in engine operation, the information available on the mechanics of this phenomenon is still lacking, and the experimental data and conditions must be updated to match the improvements in both lubricant stability and engine efficiency. To this end, an experimental apparatus has been developed to study the mechanisms that lead to the degradation and deposit formation of lubricants at high temperatures. The apparatus is designed to operate at pressures up to 69 bar, surface temperatures up to 650 °C, oil bulk temperatures up to 550 °C, and flow rates of <14 mL/min. In this apparatus, the oil is cycled through a heated test section, and deposits accumulate on the heated surface. The time required for deposits to start accumulating under the test conditions is determined based on the recorded temperature traces, and collected oil and deposit samples may be analyzed to determine changes in composition over time due to high-temperature exposure. The removable test section can be modified to accommodate different geometries, surface materials, and flow paths to adapt the instrument to a range of potential research directions. This paper presents the technical details of the new apparatus and the steps taken to characterize the experimental conditions. In addition, sample data are provided to show the unique capabilities of the new instrument, and an Arrhenius plot for Castrol Perfecto X 32 in the surface temperature range of 445–475 °C is presented as a demonstration of its use for quantifying the coking delay time. The new instrument detailed herein is the first such device to demonstrate a reliable, lab-scale technique for studying lube oil coke formation and deposition at temperatures and pressures of interest to power generation gas turbines.

1.
L. J.
Gschwender
,
C. E.
Snyder
,
L.
Nelson
,
G. W.
Fultz
, and
C. S.
Saba
, in
Turbine Lubrication in the 21st Century
, edited by
W. R.
Herguth
and
T. M.
Warne
(
ASTM International
,
West Conshohocken, PA
,
2001
), pp.
17
24
.
3.
F.
Novotny-Farkas
,
K.
Baumann
, and
T.
Leimeter
,
Goriva Maziva
47
,
220
(
2008
).
4.
Z.
Fan
,
P.
Rahimi
,
R.
McGee
,
Q.
Wen
, and
T.
Alem
,
Energy Fuels
24
,
6110
(
2010
).
5.
R. G.
Edge
and
A. T. B. P.
Squires
,
SAE Technical Paper No. 690424
(
1969
), p.
1565
.
6.
N.
Wu
,
Z.-M.
Zong
,
Y.-W.
Fei
, and
J.
Ma
,
MATEC Web Conf.
114
,
02002
(
2017
).
7.
R. E.
Kauffman
,
A.
Feng
, and
K. R.
Karasek
,
Tribol. Trans.
43
,
823
(
2000
).
8.
S.
Naidu
,
E.
Klaus
, and
J.
Duda
,
Ind. Eng. Chem. Prod. Res. Dev.
25
,
596
(
1986
).
9.
J. C.
Fitch
and
S.
Gebarin
,
J. ASTM Int.
3
,
1
(
2006
).
10.
M.
Kagaya
and
S.
Ishikawa
,
SAE Trans.
93
,
245
(
1984
).
11.
R.
Juárez
, Master’s thesis,
Texas A&M University
,
College Station, TX
,
2021
.
12.
R.
Juárez
and
E. L.
Petersen
,
J. Global Power Propul. Soc.
7
,
242
(
2023
).
13.
J. C. O.
Santos
,
I. M. G.
Santos
, and
A. G.
Souza
,
Pet. Sci. Technol.
33
,
1238
(
2015
).
14.
M.
Diaby
,
M.
Sablier
,
A.
Le Negrate
,
M.
El Fassi
, and
J.
Bocquet
,
Carbon
47
,
355
(
2009
).
15.
M. N.
Popovich
and
C.
Hering
,
Fuels and Lubricants
(
Wiley
,
New York
,
1959
).
16.
V. J.
Gatto
,
W. E.
Moehle
,
T. W.
Cobb
, and
E. R.
Schneller
,
J. ASTM Int.
3
,
1
(
2006
).
17.
S.
Mathura
,
Lubrication Degradation Mechanisms: A Complete Guide
(
CRC Press
,
Boca Raton
,
2020
).
18.
C.
Chen
and
S. M.
Hsu
,
Tribol. Lett.
14
,
83
(
2003
).
20.
R. E.
Kauffman
,
A. S.
Feng
, and
K. R.
Karasek
,
Tribol. Trans.
43
,
677
(
2000
).
21.
F. N.
Zerla
and
R. A.
Moore
,
SAE Trans.
98
,
193
(
1989
).
22.
F.
Yokoyama
and
Y.
Iwama
,
Tribol. Online
9
,
71
(
2014
).
23.
Z.
Pawlak
,
Tribochemistry of Lubricating Oils
(
Elsevier
,
Amsterdam, The Netherlands
,
2003
).
24.
R. J.
Prince
, in
Chemistry and Technology of Lubricants
, edited by
R. M.
Mortier
,
M. F.
Fox
, and
S. T.
Orszulik
(
Springer
,
2010
), pp.
3
33
.
25.
J.
Cazin
,
G.
Abellaneda
,
R.
Brégent
, and
J. C.
Pascal
,
Tribotest
4
,
167
(
1997
).
26.
L. G.
Wood
and
H.
Buchwald
,
Ind. Eng. Chem.
48
,
1925
(
1956
).
27.
L.
Pidol
,
B.
Lecointe
, and
N.
Jeuland
,
SAE Technical Paper No. 2008-01-1804
(
2008
); https://doi.org/10.4271/2008-01-1804.
28.
ASTM International, D943-20, West Conshohocken, PA,
2020
.
29.
ASTM International, D2272-14a, West Conshohocken, PA,
2014
.
30.
ASTM International, D189-06, West Conshohocken, PA,
2006
.
31.
D.
Wang
,
P.
Mousavi
,
P. J.
Hauser
,
W.
Oxenham
, and
C. S.
Grant
,
Ind. Eng. Chem. Res.
43
,
6638
(
2004
).
32.
I.
Miyata
,
S.
Hirano
,
M.
Tanada
, and
K.
Fujimoto
, in
JSAE/SAE 2015 International Powertrains, Fuels & Lubricants Meeting
,
2015
.
33.
S.
Ohkawa
,
K.
Seto
,
T.
Nakashima
, and
K.
Takase
,
SAE Trans.
93
,
262
(
1984
).
34.
P. F.
Grigor’ev
,
Y. A.
Tyurin
,
M. G.
Trusenev
, and
M. M.
Vakhmyanina
,
Chem. Technol. Fuels Oils
13
,
815
(
1977
).
35.
E-34 Propulsion Lubricants Committee, ARP5921, SAE International,
2014
.
36.
A. P.
Watkinson
, in
Proceedings of Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, Art. 32
,
2003
.
37.
B.
Branson
, “
Bench-scale testing for rapid and relevant prediction of crude fouling characteristicsusing the hot liquid process simulator
,” presented at Alcor Petrolab, San Antonio, TX,
2016
.
38.
G. L.
Steele
,
D. W.
Brinkman
, and
M. L.
Whisman
,
Natl. Bur. Stand., Spec. Publ.
584
,
221
(
1980
).
40.
M.
Srinivasan
and
A. P.
Watkinson
, in
Refereed Proceedings Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
,
2003
.
41.
High Pressure Equipment Company, Valves, Fittings & Tubing; Pressure Vessels & Reactors, https://www.highpressure.com/pdfs/FullLineCatalog1020.pdf,
2020
.
43.
The American Society of Mechanical Engineers, ASME BPVC.VIII.1-2019, New York,
2019
.
44.
The American Society of Mechanical Engineers, ASME BPVC.II.D.C-2015, New York,
2015
.
45.
B. H.
Stuart
,
Infrared Spectroscopy: Fundamentals and Applications
(
Wiley
,
Chichester, England
,
2004
).
46.
T. J.
Bruno
and
P. D. N.
Svoronos
,
CRC Handbook of Basic Tables for Chemical Analysis: Data-Driven Methods and Interpretation
(
CRC Press
,
2020
).
47.
R.
Juárez
,
N.
Gutierrez
, and
E. L.
Petersen
,
J. Turbomach.
145
,
031012
(
2022
).
48.
R.
Juárez
,
N.
Gutierrez
, and
E. L.
Petersen
, Presented in AIAA SciTech Forum, AIAA Paper No. 2023-1252,
National Harbor
,
MD
,
2023
.
49.
R.
Juárez
,
N.
Gutierrez
, and
E. L.
Petersen
, in
Proceedings of ASME Turbo Expo, GT2023-102096
,
Boston, MA
,
2023
.
You do not currently have access to this content.