Understanding the mechanisms and dynamics of molten metal droplet transfer within the plasma of a directed energy deposition arc process in microgravity is critical for optimizing the build process with minimal defects. This paper presents a unique experimental setup designed to investigate the transfer of molten metal droplets in the microgravity environment of a drop tower. The primary design of the apparatus revolves around accommodating, within the confines of the drop tower experimental capsule, essential components, including a high-speed camera with necessary filters for capturing molten metal droplets, a consumable electrode wire-arc setup, batteries, a linear traverse stage for single bead deposition, sensors, data acquisition systems, online communication systems, and the control system. These systems are secured to withstand the high deceleration forces at the end of a free fall in the drop tower. The arrangement has demonstrated consistent deposition outcomes, capturing clear images of droplet transfers using a high-speed camera along with voltage, current, and temperature data during the microgravity state induced by free fall. This apparatus will serve as a foundational element in establishing a viable additive manufacturing capability for space applications, as it provides fundamental insights into the transfer of molten metal droplets.

1.
M.
Johnson
, “
Solving the challenges of long duration space flight with 3D printing
,” https://www.nasa.gov/mission_pages/station/research/news/3d-printing-in-space-long-duration-spaceflight-applications;accessed2023.
2.
E.
Sacco
and
S. K.
Moon
, “
Additive manufacturing for space: Status and promises
,”
Int. J. Adv. Manuf. Technol.
105
(
10
),
4123
4146
(
2019
).
3.
T.
Prater
,
N.
Werkheiser
,
F.
Ledbetter
,
D.
Timucin
,
K.
Wheeler
, and
M.
Snyder
, “
3D printing in zero G technology demonstration mission: Complete experimental results and summary of related material modeling efforts
,”
Int. J. Adv. Manuf. Technol.
101
(
1–4
),
391
417
(
2019
).
4.
T. D.
Ngo
,
A.
Kashani
,
G.
Imbalzano
,
K. T. Q.
Nguyen
, and
D.
Hui
, “
Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
,”
Composites, Part B
143
,
172
196
(
2018
).
5.
E.
Toyserkani
,
D.
Sarker
,
O. O.
Ibhadode
,
F.
Liravi
,
P.
Russo
, and
K.
Taherkhani
,
Metal Additive Manufacturing
(
John Wiley and Sons
,
2021
).
6.
E.
Karayel
and
Y.
Bozkurt
, “
Additive manufacturing method and different welding applications
,”
J. Mater. Res. Technol.
9
(
5
),
11424
11438
(
2020
).
7.
C.
Dordlofva
,
A.
Lindwall
, and
P.
Törlind
, “
Opportunities and challenges for additive manufacturing in space applications,
” in
DS 85-1: Proceedings of NordDesign 2016
,
Trondheim, Norway
, (
Design Society
,
2016
), Vol. 1, pp.
401
410
.
8.
Redwire
, “
Vulcan Advanced Hybrid Manufacturing (VULCAN)
,” https://redwirespace.com/products/vulcan/; accessed 29 November
2021
.
9.
J.
Norrish
,
Advanced Welding Processes
(
Elsevier
,
2006
).
10.
W.
Kaukler
and
G.
Workman
, “
Laser welding in space
,” in
Welding in Space and the Construction of Space Vehicles by Welding
(
American Welding Society
,
1991
), pp.
318
334
.
11.
G.
Wang
, “
Laser beam welding of AISI 316 stainless steel in microgravity environment: Experiments aboard a KC-135 flight
,”
M.Sc. Thesis
(University of Manitoba,
1993
).
12.
N.
Vv
,
A.
Nair
,
P.
Niketh
,
A.
Kumar
, and
M.
Tm
, “
The 2.5 s microgravity drop tower at National Centre for Combustion Research and Development (NCCRD), Indian Institute of Technology Madras
,”
Microgravity Sci. Technol.
30
(
5
),
663
673
(
2018
).
13.
S.
Katayama
,
K.
Tanaka
,
M.
Mizutani
, and
A.
Matsunawa
, “
Pulsed YAG laser spot welding under microgravity
,”
SPIE Proc.
3888
,
96
103
(
2000
).
14.
H.
Fujii
,
H.
Umakoshi
,
Y.
Aoki
, and
K.
Nogi
, “
Bubble formation in aluminium alloy during electron beam welding
,”
J. Mater. Process. Technol.
155–156
,
1252
1255
(
2004
).
15.
K.
Nogi
,
T.
Yamamoto
,
Y.
Aoki
,
M.
Kamai
, and
H.
Fujii
, “
Electron beam welding in microgravity environment
,”
ISIJ Int.
40
,
S10
S14
(
2000
).
16.
H.
Fujii
,
N.
Sogabe
, and
K.
Nogi
, “
Convection in weld pool under microgravity and terrestrial conditions
,”
Mater. Sci. Forum
512
,
301
304
(
2006
).
17.
Y.
Aoki
,
H.
Fuji
, and
N.
Kiyoshi
, “
Effect of gravity on arc shape in GTA welding
,”
Q. J. Japan. Weld. Soc.
18
(
3
),
360
364
(
2000
).
18.
K.
Nogi
,
Y.
Aoki
,
H.
Fujii
,
K.
Nakata
, and
S.
Kaihara
, “
Weld formation in microgravity
,”
ISIJ Int.
38
(
2
),
163
170
(
1998
).
19.
K.
Nogi
,
Y.
Aoki
,
H.
Fujii
, and
K.
Nakata
, “
Behavior of bubbles in weld under microgravity
,”
Acta Mater.
46
(
12
),
4405
4413
(
1998
).
20.
D.
Ding
,
Z.
Pan
,
D.
Cuiuri
, and
H.
Li
, “
Wire-feed additive manufacturing of metal components: Technologies, developments and future interests
,”
Int. J. Adv. Des. Manuf. Technol.
81
,
465
481
(
2015
).
21.
S.
Pattanayak
and
S. K.
Sahoo
, “
Gas metal arc welding based additive manufacturing—A review
,”
CIRP J. Manuf. Sci. Technol.
33
,
398
442
(
2021
).
22.
D. H.
Gutierrez
,
P.
Doshi
,
D.
Nordlund
, and
R. P.
Gandhiraman
, “
Plasma jet printing of metallic patterns in zero gravity
,”
Flexible Printed Electron.
7
(
2
),
025016
(
2022
).
23.
T.
Waddell
,
J.
Toombs
,
A.
Reilly
,
T.
Schwab
,
C.
Castaneda
,
I.
Shan
,
T.
Lewis
,
P.
Mohnot
,
D.
Potter
, and
H.
Taylor
, “
Use of volumetric additive manufacturing as an in-space manufacturing technology
,”
Acta Astronaut.
211
,
474
482
(
2023
).
26.
Integrated Tool Design (IDT)
, NXA3, https://idtvision.com/products/cameras/nx-air-series-cameras; accessed 2023.
27.
S. S.
Choudhury
,
S. K.
Marya
, and
M.
Amirthalingam
, “
Improving arc stability during wire arc additive manufacturing of thin-walled titanium components
,”
J. Manuf. Processes
66
,
53
69
(
2021
).
28.
National Instruments
, NI-9375-C Series Digital Module, https://www.ni.com/en-in/support/model.ni-9375.html; accessed 2023.
29.
National Instruments
, NI-9401-C Series Digital Module, https://www.ni.com/en-in/support/model.ni-9401.html; accessed 2023.
30.
National Instruments
, cRIO-9067-CompactRIO Controller, https://www.ni.com/en-in/support/model.crio-9067.html; accessed 2023.
31.
HBM
, QuantumX MX840B and MX440B: 24-Bit Universal Measuring Amplifier for All Common Sensor Technologies, https://www.hbm.com/en/2129/quantumx-mx840b-8-channel-universal-amplifier/?product_type_no=QuantumX%20MX840B/MX440B:%20Universal%20Data%20Acquisition%20Module; accessed 2023.
32.
National Instruments
,
sbRIO-9607 CompactRIO Single-Board Controller
, https://www.ni.com/en-in/support/model.sbrio-9607.html;
accessed
2023
.
33.
National Instruments
, cDAQ-9191 NI CompactDAQ Chassis, https://www.ni.com/en-in/support/model.cdaq-9191.html; accessed 2023.
You do not currently have access to this content.