A relatively accurate, inexpensive, simple, and continuous quantification system for hydrogen and impurity gas(es) using a detector tube was developed in this study. Additionally, different detector tubes can be applied to measure different types of gases in a wide range from ppm order to % level. We optimized this system and evaluated its accuracy as well as the behavior of released H2 and impurity (NH3) gases from a hydrolysis of ammonia borane using a Pt/Al2O3 catalyst. The accuracy of hydrogen quantitation achieved by this system was comparable to that of commercial mass flow meters, and the accuracy of ammonia quantitation was 10% or 5% relative standard deviation, which depends on the detector tube. The concentration of released NH3 was evaluated by image analysis with a time-lapse video of the detector tube and succeeded in analyzing from ppm to % order. The H2 and NH3 release behaviors agreed with pH, and the percentage of reaction was estimated by NMR measurement of the reacted solution. These results confirmed the accuracy of this system.

1.
International Organization for Standardization
, ISO 14687:2019 Hydrogen Fuel Quality—Product Specification,
Vernier
,
Geneva
,
2019
.
2.
B.
Peng
and
J.
Chen
, “
Ammonia borane as an efficient and lightweight hydrogen storage medium
,”
Energy Environ. Sci.
1
,
479
483
(
2008
).
3.
T. B.
Marder
, “
Will we soon be fueling our automobiles with ammonia–borane?
,”
Angew. Chem., Int. Ed.
46
(
43
),
8116
8118
(
2007
).
4.
D. J.
Heldebrant
,
A.
Karkamkar
,
J. C.
Linehan
, and
T.
Autrey
, “
Synthesis of ammonia borane for hydrogen storage applications
,”
Energy Environ. Sci.
1
(
1
),
156
(
2008
).
5.
A.
Brockman
,
Y.
Zheng
, and
J.
Gore
, “
A study of catalytic hydrolysis of concentrated ammonia borane solutions
,”
Int. J. Hydrogen Energy
35
(
14
),
7350
7356
(
2010
).
6.
G.
Moussa
,
R.
Moury
,
U. B.
Demirci
, and
P.
Miele
, “
Borates in hydrolysis of ammonia borane
,”
Int. J. Hydrogen Energy
38
(
19
),
7888
7895
(
2013
).
7.
C.
Beurey
,
B.
Gozlan
,
M.
Carré
,
T.
Bacquart
,
A.
Morris
,
N.
Moore
,
K.
Arrhenius
,
H.
Meuzelaar
,
S.
Persijn
,
A.
Rojo
, and
A.
Murugan
, “
Review and survey of methods for analysis of impurities in hydrogen for fuel cell vehicles according to ISO 14687:2019
,”
Front. Energy Res.
8
,
615149
(
2021
).
8.
E.
Tronconi
,
I.
Nova
,
C.
Ciardelli
,
D.
Chatterjee
, and
M.
Weibel
, “
Redox features in the catalytic mechanism of the ‘standard’ and ‘fast’ NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods
,”
J. Catal.
245
(
1
),
1
10
(
2007
).
9.
G. H.
Mount
,
B.
Rumburg
,
J.
Havig
,
B.
Lamb
,
H.
Westberg
,
D.
Yonge
,
K.
Johnson
, and
R.
Kincaid
, “
Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet
,”
Atmos. Environ.
36
(
11
),
1799
1810
(
2002
).
10.
Z.
Pei
,
Y.
Bai
,
Y.
Wang
,
F.
Wu
, and
C.
Wu
, “
Insight to the thermal decomposition and hydrogen desorption behaviors of NaNH2–NaBH4 hydrogen storage composite
,”
ACS Appl. Mater. Interfaces
9
(
37
),
31977
31984
(
2017
).
11.
G. P.
Meisner
,
M. L.
Scullin
,
M. P.
Balogh
,
F. E.
Pinkerton
, and
M. S.
Meyer
, “
Hydrogen release from mixtures of lithium borohydride and lithium amide: A phase diagram study
,”
J. Phys. Chem. B
110
(
9
),
4186
(
2006
).
12.
H. Y.
Leng
,
T.
Ichikawa
,
S.
Hino
,
N.
Hanada
,
S.
Isobe
, and
H.
Fujii
, “
New metal–N–H system composed of Mg(NH2)2 and LiH for hydrogen storage
,”
J. Phys. Chem. B
108
(
26
),
8763
8765
(
2004
).
13.
S. B.
Shah
,
P. W.
Westerman
, and
J.
Arogo
, “
Measuring ammonia concentrations and emissions from agricultural land and liquid surfaces: A review
,”
J. Air Waste Manage. Assoc.
56
(
7
),
945
960
(
2006
).
14.
B.
Timmer
,
W.
Olthuis
, and
A. V. D.
Berg
, “
Ammonia sensors and their applications—A review
,”
Sens. Actuators, B
107
(
2
),
666
677
(
2005
).
15.
K.
Kawamura
,
K.
Miyazawa
, and
L.
Kent
, “
The past, present and future in tube- and paper-based colorimetric gas detectors
,”
AppliedChem
1
(
1
),
14
40
(
2021
).
16.
W. R.
Haag
, “
Interchangeability of gas detection tubes and hand pumps
,”
AIHAJ
62
(
1
),
65
69
(
2001
).
17.
W.
Luo
and
K.
Stewart
, “
Characterization of NH3 formation in desorption of Li–Mg–N–H storage system
,”
J. Alloys Compd.
440
(
1–2
),
357
361
(
2007
).
18.
W.
Luo
,
J.
Wang
,
K.
Stewart
,
M.
Clift
, and
K.
Gross
, “
Li–Mg–N–H: Recent investigations and development
,”
J. Alloys Compd.
446–447
,
336
341
(
2007
).
19.
H. T.
Hwang
,
P.
Greenan
,
S. J.
Kim
, and
A.
Varma
, “
Effect of boric acid on thermal dehydrogenation of ammonia borane: H2 yield and process characteristics
,”
AIChE J.
59
(
9
),
3359
3364
(
2013
).
20.
K.
Mitsubayashi
,
G.
Nishio
,
M.
Sawai
,
E.
Kazawa
,
H.
Yoshida
,
T.
Saito
,
H.
Kudo
,
K.
Otsuka
,
M.
Takao
, and
H.
Saito
, “
A biochemical sniffer-chip for convenient analysis of gaseous formaldehyde from timber materials
,”
Microchim. Acta
160
(
4
),
427
433
(
2008
).
21.
R. B.
Allison
,
A.
Montgomery
, and
G. L.
Sacks
, “
Analysis of free hydrogen sulfide in wines using gas detection tubes
,”
Catalyst
6
(
1
),
1
8
(
2022
).
22.
M.
Chandra
and
Q.
Xu
, “
Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts
,”
J. Power Sources
168
(
1
),
135
142
(
2007
).
23.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
(
7
),
671
675
(
2012
).
24.
F.
Zheng
,
S. D.
Rassat
,
D. J.
Helderandt
,
D. D.
Caldwell
,
C. L.
Aardahl
,
T.
Autrey
,
J. C.
Linehan
, and
K. G.
Rappé
, “
Automated gas burette system for evolved hydrogen measurements
,”
Rev. Sci. Instrum.
79
(
8
),
084103
(
2008
).
25.
J. A.
Tossell
, “
Boric acid, ‘carbonic’ acid, and N-containing oxyacids in aqueous solution: Ab initio studies of structure, pKa, NMR shifts, and isotopic fractionations
,”
Geochim. Cosmochim. Acta
69
(
24
),
5647
5658
(
2005
).

Supplementary Material

You do not currently have access to this content.