Off-fault damage or pulverized rocks found in large-scale strike–slip faults are of great interest in earthquake research. In order to experimentally investigate rock pulverization, we developed a split Hopkinson pressure bar with compact dimensions and high-speed imaging. The developed experimental setup is capable of generating very high strain rates up to 1320 s−1 with the satisfaction of stress equilibrium, which are essential to reproduce the dynamic pulverization observed in nature and obtain dynamic stress–strain responses accurately. High-speed imaging revealed that cracks initiate and propagate along the grain boundaries at very high speeds, while the dynamic stress–strain response suggested that energy dissipated into the fracture increases with stronger impacts. In addition, we show that the apparatus is capable of producing particle size distributions partly similar to those in naturally pulverized rocks of large-scale strike–slip faults. Thus, our developed system with compact dimensions opens new ways to understand the dynamics of the rock pulverization in off-fault regions of large-scale strike–slip faults.

1.
O.
Dor
,
T. K.
Rockwell
, and
Y.
Ben-Zion
, “
Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in Southern California: A possible indicator for preferred rupture propagation direction
,”
Pure Appl. Geophys.
163
(
2–3
),
301
349
(
2006
).
2.
J.
Muto
,
T.
Nakatani
,
O.
Nishikawa
, and
H.
Nagahama
, “
Fractal particle size distribution of pulverized fault rocks as a function of distance from the fault core
,”
Geophys. Res. Lett.
42
(
10
),
3811
3819
, (
2015
).
3.
T. M.
Mitchell
,
Y.
Ben-Zion
, and
T.
Shimamoto
, “
Pulverized fault rocks and damage asymmetry along the Arima-Takatsuki Tectonic Line, Japan
,”
Earth Planet. Sci. Lett.
308
(
3–4
),
284
297
(
2011
).
4.
O.
Dor
,
C.
Yildirim
,
T. K.
Rockwell
,
Y.
Ben-Zion
,
O.
Emre
,
M.
Sisk
, and
T. Y.
Duman
, “
Geological and geomorphologic asymmetry across the rupture zones of the 1943 and 1944 earthquakes on the North Anatolian Fault: Possible signals for preferred earthquake propagation direction
,”
Geophys. J. Int.
173
(
2
),
483
504
(
2008
).
5.
R. H.
Sibson
, “
Fault rocks and fault mechanisms
,”
J. Geol. Soc.
133
(
3
),
191
213
(
1977
).
6.
R. E.
Wallace
and
H. T.
Morris
, “
Characteristics of faults and shear zones in deep mines
,”
Pure Appl. Geophys.
124
(
1–2
),
107
125
(
1986
).
7.
C. H.
Scholz
, “
Wear and gouge formation in brittle faulting
,”
Geology
15
(
6
),
493
(
1987
).
8.
J. N.
Brune
, “
Fault normal dynamic loading and unloading: an explanation for “non-gouge” rock powder and lack of fault-parallel shear bands along the San Andreas Fault
,” in AGU Fall Meeting Abstracts (EOS Trans. Am. Geophys. Union 82, 2001), pp.
S22B
S0655
.
9.
C. H.
Scholz
,
N. H.
Dawers
,
J.-Z.
Yu
,
M. H.
Anders
, and
P. A.
Cowie
, “
Fault growth and fault scaling laws: Preliminary results
,”
J. Geophys. Res.: Solid Earth
98
(
B12
),
21951
21961
, (
1993
).
10.
D. R.
Faulkner
,
T. M.
Mitchell
,
E.
Jensen
, and
J.
Cembrano
, “
Scaling of fault damage zones with displacement and the implications for fault growth processes
,”
J. Geophys. Res.
116
(
B5
),
B05403
, (
2011
).
11.
E. C.
Robertson
, “
Continuous formation of gouge and breccia during fault displacement
,” in
R.E.
Goodman
and
F.
Hulse
(Eds.)
Issues in Rock Mechanics, Proc
,
23rd Symp.
(
Rock. Mech., Am. Inst. Min. Engrs
,
New York
,
1982
), pp.
397
404
.
12.
K.
Okubo
,
H. S.
Bhat
,
E.
Rougier
,
S.
Marty
,
A.
Schubnel
,
Z.
Lei
,
E. E.
Knight
, and
Y.
Klinger
, “
Dynamics, radiation, and overall energy budget of earthquake rupture with coseismic off-fault damage
,”
J. Geophys. Res.: Solid Earth
124
(
11
),
11771
11801
, (
2019
).
13.
D. L.
Olgaard
and
W. F.
Brace
, “
The microstructure of gouge from a mining-induced seismic shear zone
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
20
(
1
),
11
19
(
1983
).
14.
J. S.
Chester
,
F. M.
Chester
, and
A. K.
Kronenberg
, “
Fracture surface energy of the Punchbowl fault, San Andreas system
,”
Nature
437
(
7055
),
133
136
(
2005
).
15.
H.
Nagahama
and
K.
Yoshii
, “
Fractal dimension and fracture of brittle rocks
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
30
(
2
),
173
175
(
1993
).
16.
D. L.
Turcotte
, “
Fractals and fragmentation
,”
J. Geophys. Res.
91
(
B2
),
1921
1926
, (
1986
).
17.
H.
Nagahama
, “
Fractal fragment size distribution for brittle rocks
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
30
(
4
),
469
471
(
1993
).
18.
C.
Sammis
,
G.
King
, and
R.
Biegel
, “
The kinematics of gouge deformation
,”
Pure Appl. Geophys.
125
(
5
),
777
812
(
1987
).
19.
H.
Rumpf
, “
Physical aspects of comminution and new formulation of a law of comminution
,”
Powder Technol.
7
(
3
),
145
159
(
1973
).
20.
M. L.
Doan
and
G.
Gary
, “
Rock pulverization at high strain rate near the San Andreas fault
,”
Nat. Geosci.
2
(
10
),
709
712
(
2009
).
21.
F. M.
Aben
,
M. L.
Doan
,
T. M.
Mitchell
,
R.
Toussaint
,
T.
Reuschlé
,
M.
Fondriest
,
J. P.
Gratier
, and
F.
Renard
, “
Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones
,”
J. Geophys. Res.: Solid Earth
121
(
4
),
2338
2360
, (
2016
).
22.
T.
Barber
and
W. A.
Griffith
, “
Experimental constraints on dynamic fragmentation as a dissipative process during seismic slip
,”
Philos. Trans. R. Soc., A
375
(
2103
),
20160002
(
2017
).
23.
M. J.
Braunagel
and
W. A.
Griffith
, “
The effect of dynamic stress cycling on the compressive strength of rocks
,”
Geophys. Res. Lett.
46
(
12
),
6479
6486
, (
2019
).
24.
H. O.
Ghaffari
,
W. A.
Griffith
, and
T. J.
Barber
, “
Energy delocalization during dynamic rock fragmentation
,”
Geophys. J. Int.
217
(
2
),
1034
1046
(
2019
).
25.
T. J.
Vogler
, “
On measuring the strength of metals at ultrahigh strain rates
,”
J. Appl. Phys.
106
(
5
),
053530
(
2009
).
26.
D.
Jia
and
K. T.
Ramesh
, “
A rigorous assessment of the benefits of miniaturization in the Kolsky bar system
,”
Exp. Mech.
44
(
5
),
445
454
(
2004
).
27.
X.
Chen
,
Z.
Liu
,
G.
He
, and
H.
Xie
, “
A novel integrated tension-compression design for a mini split Hopkinson bar apparatus
,”
Rev. Sci. Instrum.
85
(
3
),
035114
(
2014
).
28.
B. J.
Tuazon
,
K. O.
Bae
,
S. H.
Lee
, and
H. S.
Shin
, “
Integration of a new data acquisition/processing scheme in SHPB test and characterization of the dynamic material properties of high-strength steels using the optional form of Johnson–Cook model
,”
J. Mech. Sci. Technol.
28
(
9
),
3561
3568
(
2014
).
29.
J. Z.
Malinowski
,
J. R.
Klepaczko
, and
Z. L.
Kowalewski
, “
Miniaturized compression test at very high strain rates by direct impact
,”
Exp. Mech.
47
(
4
),
451
463
(
2007
).
30.
M. S.
Chaudhry
and
A.
Czekanski
, “
FE analysis of critical testing parameters in Kolsky bar experiments for elastomers at high strain rate
,”
Materials
12
(
23
),
3817
(
2019
).
31.
W. W.
Chen
,
M. C.
Hudspeth
,
B.
Claus
,
N. D.
Parab
,
J. T.
Black
,
K.
Fezzaa
, and
S. N.
Luo
, “
In situ damage assessment using synchrotron X-rays in materials loaded by a Hopkinson bar
,”
Philos. Trans. R. Soc., A
372
,
20130191
(
2014
).
32.
P.
Jakkula
,
A.
Cohen
,
B.
Lukić
,
D.
Levi-Hevroni
,
A.
Rack
,
G.
Ganzenmüller
, and
S.
Hiermaier
, “
Split Hopkinson tension bar and universal testing machine for high-speed x-ray imaging of materials under tension
,”
Instruments
6
(
3
),
38
(
2022
).
33.
F. Q.
Gong
,
X. F.
Si
,
X. B.
Li
, and
S. Y.
Wang
, “
Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar
,”
Int. J. Rock Mech. Min. Sci.
113
,
211
219
(
2019
).
34.
D.
Li
,
P.
Xiao
,
Z.
Han
, and
Q.
Zhu
, “
Mechanical and failure properties of rocks with a cavity under coupled static and dynamic loads
,”
Eng. Fract. Mech.
225
,
106195
(
2018
).
35.
Y.
Deng
,
M.
Chen
,
Y.
Jin
, and
D.
Zou
, “
Theoretical analysis and experimental research on the energy dissipation of rock crushing based on fractal theory
,”
J. Nat. Gas Sci. Eng.
33
,
231
239
(
2016
).
36.
M. L.
Doan
and
A.
Billi
, “
High strain rate damage of Carrara marble
,”
Geophys. Res. Lett.
38
(
19
),
L19302
, (
2011
).
37.
F. M.
Aben
,
M.-L.
Doan
,
J.-P.
Gratier
, and
F.
Renard
, “
Coseismic damage generation and pulverization in fault zones: Insights from dynamic split‐Hopkinson pressure bar experiments
,” in
Fault Zone Dynamic Processes: Evolution of Fault Zone Properties and Dynamic Processes during Seismic Rupture
(
John Wiley & Sons, Inc.
,
2017
), pp.
47
80
.
38.
D. J.
Frew
,
M. J.
Forrestal
, and
W.
Chen
, “
Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar
,”
Exp. Mech.
42
(
1
),
93
106
(
2002
).
39.
F.
Dai
,
S.
Huang
,
K.
Xia
, and
Z.
Tan
, “
Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar
,”
Rock Mech. Rock Eng.
43
(
6
),
657
666
(
2010
).
40.
K.
Xia
and
W.
Yao
, “
Dynamic rock tests using split Hopkinson (Kolsky) bar system—A review
,”
J. Rock Mech. Geotech. Eng.
7
(
1
),
27
59
(
2015
).
41.
D. J.
Frew
,
M. J.
Forrestal
, and
W.
Chen
, “
A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials
,”
Exp. Mech.
41
(
1
),
40
46
(
2001
).
42.
H.
Kolsky
, “
An investigation of the mechanical properties of materials at very high rates of loading
,”
Proc. Phys. Soc. B
62
(
11
),
676
700
(
1949
).
43.
Y.
Kudo
,
O.
Sano
,
N.
Murashige
,
Y.
Mizuta
, and
K.
Nakagawa
, “
Stress-induced crack path in Aji granite under tensile stress
,”
Pure Appl. Geophys.
138
(
4
),
641
656
(
1992
).
44.
T.
Takemura
and
M.
Oda
, “
Changes in crack density and wave velocity in association with crack growth in triaxial tests of Inada granite
,”
J. Geophys. Res.: Solid Earth
110
(
5
),
1
14
, (
2005
).
45.
H.
Nagahama
, “
Fracturing in the solid earth
,”
Sci. Rep. Tohoku Univ. 2nd Ser. (Geol.)
61
(
2
),
103
126
(
1991
).
46.
Z.
Reches
and
T. A.
Dewers
, “
Gouge formation by dynamic pulverization during earthquake rupture
,”
Earth Planet. Sci. Lett.
235
(
1–2
),
361
374
(
2005
).
47.
S.
Das
, “
The need to study speed
,”
Science
317
(
5840
),
905
906
(
2007
).
48.
V.
Rubino
,
A. J.
Rosakis
, and
N.
Lapusta
, “
Spatiotemporal properties of sub-Rayleigh and supershear ruptures inferred from full-field dynamic imaging of laboratory experiments
,”
J. Geophys. Res.: Solid Earth
125
(
2
),
e2019JB018922
, (
2020
).
49.
X.-Q.
Wang
,
A.
Schubnel
,
J.
Fortin
,
Y.
Guéguen
, and
H.-K.
Ge
, “
Physical properties and brittle strength of thermally cracked granite under confinement
,”
J. Geophys. Res.: Solid Earth
118
(
12
),
6099
6112
, (
2013
).
50.
E. G.
Jayawickrama
,
T.
Sekiguchi
,
J.
Muto
,
S.
Sawa
,
H.
Nagahama
,
Y.
Kono
,
K.-O.
Bae
, and
H.-S.
Shin
(
2023
). “
SHPB
,”
Mendeley Data
, V1,
You do not currently have access to this content.