Single-beam acoustic tweezers have recently been demonstrated to be capable of selective three-dimensional trapping. This new contactless manipulation modality has great potential for many scientific applications. Its development as a scientific tool requires precise calibration of its radiation force, specifically its axial component. The lack of calibration for this force is mainly due to its weak magnitude compared to competing effects such as weight. We investigate an experimental method for the calibration of the axial stiffness of the radiation force by observing the axial oscillations of a trapped bead in a microgravity environment. The stiffness exhibits a linear relationship with the acoustic intensity and is of the mN/m order. Then, a predictive model, loaded with the experimental acoustic field, is compared to the measured stiffness with very good agreement, within a single amplitude coefficient. This study paves the way for the development of calibrated acoustic tweezers.

1.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
,
288
(
1986
).
2.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
3.
A.
Marzo
,
M.
Caleap
, and
B. W.
Drinkwater
, “
Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles
,”
Phys. Rev. Lett.
120
,
044301
(
2018
).
4.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers
,”
Phys. Rev. Lett.
116
,
024301
(
2016
).
5.
J.
Shi
,
D.
Ahmed
,
X.
Mao
,
S. C. S.
Lin
,
A.
Lawit
, and
T. J.
Huang
, “
Acoustic tweezers: Patterning cells and microparticles using standing surface acoustic waves (SSAW)
,”
Lab Chip
9
,
2890
2895
(
2009
).
6.
E. H.
Trinh
, “
Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity
,”
Rev. Sci. Instrum.
56
,
2059
2065
(
1985
).
7.
J.
Gao
,
C.
Cao
, and
B.
Wei
, “
Containerless processing of materials by acoustic levitation
,”
Adv. Space Res.
24
,
1293
1297
(
1999
).
8.
S.
Santesson
and
S.
Nilsson
, “
Airborne chemistry: Acoustic levitation in chemical analysis
,”
Anal. Bioanal. Chem.
378
,
1704
1709
(
2004
).
9.
P. L.
Marston
and
D. B.
Thiessen
, “
Manipulation of fluid objects with acoustic radiation pressure
,”
Ann. N. Y. Acad. Sci.
1027
,
414
434
(
2004
).
10.
K.
Hasegawa
,
A.
Watanabe
, and
Y.
Abe
, “
Acoustic manipulation of droplets under reduced gravity
,”
Sci. Rep.
9
,
16603
(
2019
).
11.
G.
Regnault
,
C.
Mauger
,
P.
Blanc-Benon
, and
C.
Inserra
, “
Secondary radiation force between two closely spaced acoustic bubbles
,”
Phys. Rev. E
102
,
031101
(
2020
).
12.
S.
Cleve
,
M.
Guédra
,
C.
Mauger
,
C.
Inserra
, and
P.
Blanc-Benon
, “
Microstreaming induced by acoustically trapped, non-spherically oscillating microbubbles
,”
J. Fluid Mech.
875
,
597
621
(
2019
).
13.
P.
Zhang
,
H.
Bachman
,
A.
Ozcelik
, and
T. J.
Huang
, “
Acoustic microfluidics
,”
Annu. Rev. Anal. Chem.
13
,
17
43
(
2020
).
14.
M.
Li
,
N.
Xi
,
Y.
Wang
, and
L.
Liu
, “
Progress in nanorobotics for advancing biomedicine
,”
IEEE Trans. Biomed. Eng.
68
,
130
147
(
2021
).
15.
B. T.
Hefner
and
P. L.
Marston
, “
An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems
,”
J. Acoust. Soc. Am.
106
,
3313
3316
(
1999
).
16.
R.
Marchiano
and
J.-L.
Thomas
, “
Synthesis and analysis of linear and nonlinear acoustical vortices
,”
Phys. Rev. E
71
,
066616
(
2005
).
17.
P. L.
Marston
, “
Radiation force of a helicoidal Bessel beam on a sphere
,”
J. Acoust. Soc. Am.
125
,
3539
3547
(
2009
).
18.
L.
Zhang
and
P. L.
Marston
, “
Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres
,”
Phys. Rev. E
84
,
035601
(
2011
).
19.
D.
Baresch
and
V.
Garbin
, “
Acoustic trapping of microbubbles in complex environments and controlled payload release
,”
Proc. Natl. Acad. Sci.
117
,
15490
15496
(
2020
).
20.
A. V.
Nikolaeva
,
S. A.
Tsysar
, and
O. A.
Sapozhnikov
, “
Measuring the radiation force of megahertz ultrasound acting on a solid spherical scatterer
,”
Acoust. Phys.
62
,
38
45
(
2016
).
21.
M. A.
Ghanem
,
A. D.
Maxwell
,
O. A.
Sapozhnikov
,
V. A.
Khokhlova
, and
M. R.
Bailey
, “
Quantification of acoustic radiation forces on solid objects in fluid
,”
Phys. Rev. Appl.
12
,
044076
(
2019
).
22.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Spherical vortex beams of high radial degree for enhanced single-beam tweezers
,”
J. Appl. Phys.
113
,
184901
(
2013
).
23.
O. A.
Sapozhnikov
and
M. R.
Bailey
, “
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
,”
J. Acoust. Soc. Am.
133
,
661
676
(
2013
).
24.
R.
Whymark
, “
Acoustic field positioning for containerless processing
,”
Ultrasonics
13
,
251
261
(
1975
).
25.
W. J.
Xie
,
C. D.
Cao
,
Y. J.
, and
B.
Wei
, “
Levitation of iridium and liquid mercury by ultrasound
,”
Phys. Rev. Lett.
89
,
104304
(
2002
).
26.
J. K. R.
Weber
,
C. A.
Rey
,
J.
Neuefeind
, and
C. J.
Benmore
, “
Acoustic levitator for structure measurements on low temperature liquid droplets
,”
Rev. Sci. Instrum.
80
,
083904
(
2009
).
27.
C. A.
Rey
,
D. R.
Merkley
,
G. R.
Hammarlund
, and
T. J.
Danley
, “
Acoustic levitation technique for containerless processing at high temperatures in space
,”
Metall. Trans.
19
,
2619
2623
(
1988
).
28.
T. G.
Wang
,
A. V.
Anilkumar
,
C. P.
Lee
, and
K. C.
Lin
, “
Bifurcation of rotating liquid drops: Results from USML-1 experiments in Space
,”
J. Fluid Mech.
276
,
389
403
(
1994
).
29.
T. G.
Wang
,
A. V.
Anilkumar
, and
C. P.
Lee
, “
Oscillations of liquid drops: Results from USML-1 experiments in Space
,”
J. Fluid Mech.
308
,
1
14
(
1996
).
30.
E. H.
Trinh
and
C. J.
Hsu
, “
Acoustic levitation methods for density measurements
,”
J. Acoust. Soc. Am.
80
,
1757
1761
(
1986
).
31.
D.
Zhao
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Computation of the radiation force exerted by the acoustic tweezers using pressure field measurements
,”
J. Acoust. Soc. Am.
146
,
1650
1660
(
2019
).
32.
L.
Zhang
and
P. L.
Marston
, “
Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects
,”
Phys. Rev. E
84
,
065601
(
2011
).
33.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams
,”
Phys. Rev. Lett.
121
,
074301
(
2018
).
34.
A.
Lamprecht
,
T.
Schwarz
,
J.
Wang
, and
J.
Dual
, “
Viscous torque on spherical micro particles in two orthogonal acoustic standing wave fields
,”
J. Acoust. Soc. Am.
138
,
23
32
(
2015
).
35.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere
,”
J. Acoust. Soc. Am.
133
,
25
36
(
2013
).
36.
C.
Eckart
, “
Vortices and streams caused by sound waves
,”
Phys. Rev.
73
,
68
76
(
1948
).
37.
W. L.
Nyborg
, “
Acoustic streaming due to attenuated plane waves
,”
J. Acoust. Soc. Am.
25
,
68
75
(
1953
).
38.
S. J.
Lighthill
, “
Acoustic streaming
,”
J. Sound Vib.
61
,
391
418
(
1978
).
39.
M.
Baudoin
and
J.-L.
Thomas
, “
Acoustic tweezers for particle and fluid micromanipulation
,”
Annu. Rev. Fluid. Mech.
52
,
205
234
(
2020
).
You do not currently have access to this content.